A Pilot Study on the Fecal Microbiota in Mexican Women with Gestational Diabetes Mellitus and Their Newborns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment and Follow-Up
2.2. Sample Collection
2.3. Sequencing and Bioinformatics
2.4. Statistics
3. Results
3.1. Characteristics of the Patients
3.2. Fecal and Meconium Bacterial Diversity
3.3. Relative Abundance of Maternal Fecal Microbiota
3.4. Relative Abundance of Newborn Meconium Microbiota
3.5. Correlation Analysis of Bacterial Relative Abundance with Maternal BMI and Blood Glucose Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahn, J.S.; Lkhagva, E.; Jung, S.; Kim, H.J.; Chung, H.J.; Hong, S.-T. Fecal microbiome does not represent whole gut microbiome. Cell. Microbiol. 2023, 2023, 6868417. [Google Scholar] [CrossRef]
- Krajmalnik-Brown, R.; Ilhan, Z.E.; Kang, D.W.; DiBaise, J.K. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 2012, 27, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Maranduba, C.M.; De Castro, S.B.; de Souza, G.T.; Rossato, C.; da Guia, F.C.; Valente, M.A.; Rettore, J.V.; Maranduba, C.P.; de Souza, C.M.; do Carmo, A.M.; et al. Intestinal microbiota as modulators of the immune system and neuroimmune system: Impact on the host health and homeostasis. J. Immunol. Res. 2015, 2015, 931574. [Google Scholar] [CrossRef]
- Thorburn, A.N.; McKenzie, C.I.; Shen, S.; Stanley, D.; Macia, L.; Mason, L.J.; Roberts, L.K.; Wong, C.H.; Shim, R.; Robert, R.; et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 2015, 6, 7320. [Google Scholar] [CrossRef] [PubMed]
- Patterson, E.; Ryan, P.M.; Cryan, J.F.; Dinan, T.G.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Gut microbiota, obesity and diabetes. Postgrad. Med. J. 2016, 92, 286–300. [Google Scholar] [CrossRef]
- Aitoro, R.; Paparo, L.; Amoroso, A.; Di Costanzo, M.; Cosenza, L.; Granata, V.; Di Scala, C.; Nocerino, R.; Trinchese, G.; Montella, M. Gut Microbiota as a Target for Preventive and Therapeutic Intervention against Food Allergy. Nutrients 2017, 9, 672. [Google Scholar] [CrossRef]
- Al-Assal, K.; Martinez, A.C.; Torrinhas, R.S.; Cardinelli, C.; Waitzberg, D. Gut microbiota and obesity. Clin. Nutr. Exp. 2018, 20, 60–64. [Google Scholar] [CrossRef]
- Xu, H.; Liu, M.; Cao, J.; Li, X.; Fan, D.; Xia, Y.; Lu, X.; Li, J.; Ju, D.; Zhao, H. The Dynamic Interplay between the Gut Microbiota and Autoimmune Diseases. J. Immunol. Res. 2019, 2019, 7546047. [Google Scholar] [CrossRef]
- Li, P.; Wang, H.; Guo, L.; Gou, X.; Chen, G.; Lin, D.; Fan, D.; Guo, X.; Liu, Z. Association between gut microbiota and preeclampsia-eclampsia: A two-sample Mendelian randomization study. BMC Med. 2022, 20, 443. [Google Scholar] [CrossRef]
- Liu, H.; Pan, L.L.; Lv, S.; Yang, Q.; Zhang, H.; Chen, W.; Lv, Z.; Sun, J. Alterations of Gut Microbiota and Blood Lipidome in Gestational Diabetes Mellitus With Hyperlipidemia. Front. Physiol. 2019, 10, 1015. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. on behalf of the American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S19–S40. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Mcintyre, H.D.; Cruickshank, J.K.; Mccance, D.R.; Dyer, B.E.; Metzger, A.R.; Oats, J.J. The Hyperglycemia and Adverse Pregnancy Outcome Study. Diabetes Care 2012, 35, 780–786. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Catalano, P.M.; Kirwan, J.P.; Haugel-de Mouzon, S.; King, J. Gestational diabetes and insulin resistance: Role in short- and long-term implications for mother and fetus. J. Nutr. 2003, 133, 1674S–1683S. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Kubota, T.; Nakanishi, Y.; Tsugawa, H.; Suda, W.; Kwon, A.T.; Yazaki, J.; Ikeda, K.; Nemoto, S.; Mochizuki, Y.; et al. Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature 2023, 621, 389–395. [Google Scholar] [CrossRef]
- Kuang, Y.S.; Lu, J.H.; Li, S.H.; Li, J.H.; Yuan, M.Y.; He, J.R.; Chen, N.N.; Xiao, W.-Q.; Shen, S.-Y.; Qiu, L.; et al. Connections between the human gut microbiome and gestational diabetes mellitus. Gigascience 2017, 6, 1–12. [Google Scholar] [CrossRef]
- Su, Y.; Wang, H.K.; Gan, X.P.; Chen, L.; Cao, Y.N.; Cheng, D.C.; Zhang, D.Y.; Liu, W.-Y.; Li, F.-F.; Xu, X.-M.; et al. Alterations of gut microbiota in gestational diabetes patients during the second trimester of pregnancy in the Shanghai Han population. J. Transl. Med. 2021, 19, 366. [Google Scholar] [CrossRef]
- Crusell, M.K.W.; Hansen, T.H.; Nielsen, T.; Allin, K.H.; Rühlemann, M.C.; Damm, P.; Vestergaard, H.; Rørbye, C.; Jørgensen, N.R.; Christiansen, O.B.; et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome 2018, 6, 89. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, M.; Zhang, J.; Sun, Z.; Ran, L.; Ban, Y.; Wang, B.; Hou, X.; Zhai, S.; Ren, L.; et al. Differential intestinal and oral microbiota features associated with gestational diabetes and maternal inflammation. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E247–E253. [Google Scholar] [CrossRef]
- Mokkala, K.; Houttu, N.; Vahlberg, T.; Munukka, E.; Rönnemaa, T.; Laitinen, K. Gut microbiota aberrations precede diagnosis of gestational diabetes mellitus. Acta. Diabetol. 2017, 54, 1147–1149. [Google Scholar] [CrossRef]
- Stiemsma, L.T.; Michels, K.B. The Role of the Microbiome in the Developmental Origins of Health and Disease. Pediatrics 2018, 141, e20172437. [Google Scholar] [CrossRef]
- Ponzo, V.; Ferrocino, I.; Zarovska, A.; Amenta, M.B.; Leone, F.; Monzeglio, C.; Rosato, R.; Pellegrini, M.; Gambino, R.; Cassader, M.; et al. The microbiota composition of the offspring of patients with gestational diabetes mellitus (GDM). PLoS ONE 2019, 14, e0226545. [Google Scholar] [CrossRef] [PubMed]
- Soderborg, T.K.; Carpenter, C.M.; Janssen, R.C.; Weir, T.L.; Robertson, C.E.; Ir, D.; Young, B.E.; Krebs, N.F.; Hernandez, T.L.; Barbour, L.A.; et al. Gestational Diabetes Is Uniquely Associated With Altered Early Seeding of the Infant Gut Microbiota. Front. Endocrinol. 2020, 11, 603021. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Muñoz, E.; Parra, A.; Castillo-Mora, A.; Ortega-González, C. Effect of the diagnostic criteria of the Internacional Association of Diabetes and Pregnancy Study Groups on the Prevalence of Gestational Diabetes Mellitus in urban mexican women: A cross-sectional study. Endocr. Pract. 2012, 18, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Dainelli, L.; Prieto-Patron, A.; Silva-Zolezzi, I.; Sosa-Rubi, S.G.; Espino, Y.; Sosa, S.; Reyes-Muñoz, E.; Lopez-Ridaura, R.; Detzel, P. Screening and management of gestational diabetes in Mexico: Results from a survey of multilocation, multi-health care institution practitioners. Diabetes Metab. Syndr. Obes. 2018, 11, 105–116. [Google Scholar] [CrossRef]
- World Health Organization. Classification of Diabetes Mellitus; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016, 4, e2584. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- He, Q.; Kwok, L.Y.; Xi, X.; Zhong, Z.; Ma, T.; Xu, H.; Meng, H.; Zhao, F.; Zhang, H. The meconium microbiota shares more features with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. Gut Microbes 2020, 12, 1794266. [Google Scholar] [CrossRef] [PubMed]
- Coombes, Z.; Yadav, V.; McCoubrey, L.E.; Freire, C.; Basit, A.W.; Conlan, R.S.; Gonzalez, D. Progestogens Are Metabolized by the Gut Microbiota: Implications for Colonic Drug Delivery. Pharmaceutics 2020, 12, 760. [Google Scholar] [CrossRef]
- Hussain, T.; Murtaza, G.; Kalhoro, D.H.; Kalhoro, M.S.; Metwally, E.; Chughtai, M.I.; Mazhar, M.U.; Khan, S.A. Relationship between gut microbiota and host-metabolism: Emphasis on hormones related to reproductive function. Anim. Nutr. 2021, 7, 1–10. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, T.; Chen, S.; Liao, Y.; Huang, H.; Xiao, B.; Zhang, J.V.; Ma, L.; Zhu, Y. Association of Gestational Diabetes With the Dynamic Changes of Gut Microbiota in Offspring From 1 to 6 Months of Age. J. Clin. Endocrinol. Metab. 2023, 108, 2315–2323. [Google Scholar] [CrossRef]
- Moreno-Indias, I.; Sánchez-Alcoholado, L.; García-Fuentes, E.; Cardona, F.; Queipo-Ortuño, M.I.; Tinahones, F.J. Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients. Am. J. Transl. Res. 2016, 8, 5672–5684. [Google Scholar] [PubMed]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef] [PubMed]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef]
- Teixeira, R.A.; Silva, C.; Ferreira, A.C.; Martins, D.; Leite-Moreira, A.; Miranda, I.M.; Barros, A.S. The Association between Gestational Diabetes and the Microbiome: A Systematic Review and Meta-Analysis. Microorganisms 2023, 11, 1749. [Google Scholar] [CrossRef]
- Moon, J.Y.; Zolnik, C.P.; Wang, Z.; Qiu, Y.; Usyk, M.; Wang, T.; Kizer, J.R.; Landay, A.L.; Kurland, I.J.; Anastos, K.; et al. Gut microbiota and plasma metabolites associated with diabetes in women with, or at high risk for, HIV infection. EBioMedicine 2018, 37, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Radjabzadeh, D.; Chen, L.; Kurilshikov, A.; Kavousi, M.; Ahmadizar, F.; Ikram, M.A.; Uitterlinden, A.G.; Zhernakova, A.; Fu, J.; et al. Association of Insulin Resistance and Type 2 Diabetes With Gut Microbial Diversity: A Microbiome-Wide Analysis From Population Studies. JAMA Netw. Open 2021, 4, e2118811. [Google Scholar] [CrossRef]
- Wu, H.; Esteve, E.; Tremaroli, V.; Khan, M.T.; Caesar, R.; Manneras-Holm, L.; Stahlman, M.; Olsson, L.M.; Serino, M.; Planas-Fèlix, M.; et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 2017, 23, 850–858. [Google Scholar] [CrossRef]
- Martín, R.; Rios-Covian, D.; Huillet, E.; Auger, S.; Khazaal, S.; Bermúdez-Humarán, L.G.; Sokol, H.; Chatel, J.M.; Langella, P. Faecalibacterium: A bacterial genus with promising human health applications. FEMS Microbiol. Rev. 2023, 47, fuad039. [Google Scholar] [CrossRef]
- Miquel, S.; Martín, R.; Lashermes, A.; Gillet, M.; Meleine, M.; Gelot, A.; Eschalier, A.; Ardid, D.; Bermúdez-Humarán, L.G.; Sokol, H.; et al. Anti-nociceptive effect of Faecalibacterium prausnitzii in non-inflammatory IBS-like models. Sci. Rep. 2016, 6, 19399. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, C.; Jiang, Q.; Yin, Y. Butyrate in Energy Metabolism: There Is Still More to Learn. Trends Endocrinol. Metab. 2021, 32, 159–169. [Google Scholar] [CrossRef]
- Carlson, A.L.; Xia, K.; Azcarate-Peril, M.A.; Goldman, B.D.; Ahn, M.; Styner, M.A.; Thompson, A.L.; Geng, X.; Gilmore, J.H.; Knickmeyer, R.C. Infant Gut Microbiome Associated With Cognitive Development. Biol. Psychiatry 2018, 83, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Yi, X.; Zhang, X.; Wang, H.; Liu, H.; Mou, W.W. Imbalance in the Gut Microbiota of Children With Autism Spectrum Disorders. Front. Cell. Infect. Microbiol. 2021, 11, 572752. [Google Scholar] [CrossRef] [PubMed]
- Rowland, J.; Wilson, C.A. The association between gestational diabetes and ASD and ADHD: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 5136. [Google Scholar] [CrossRef] [PubMed]
- Rodolaki, K.; Pergialiotis, V.; Iakovidou, N.; Boutsikou, T.; Iliodromiti, Z.; Kanaka-Gantenbein, C. The impact of maternal diabetes on the future health and neurodevelopment of the offspring: A review of the evidence. Front. Endocrinol. 2023, 14, 1125628. [Google Scholar] [CrossRef]
- Aviel-Shekler, K.; Hamshawi, Y.; Sirhan, W.; Getselter, D.; Srikanth, K.D.; Malka, A.; Piran, R.; Elliott, E. Gestational diabetes induces behavioral and brain gene transcription dysregulation in adult offspring. Transl. Psychiatry 2020, 10, 412. [Google Scholar] [CrossRef]
GDM (n = 8) | Control (n = 9) | p * | Data Collection Time | |
---|---|---|---|---|
Mother | ||||
Age | 34.37 ± 4.43 | 32.55 ± 3.28 | 0.348 | 1st trimester |
Weight at first appointment (kg) | 89.50 ± 22.93 | 69.88 ± 12.01 | 0.040 | 1st trimester |
BMI at first appointment | 33.82 ± 5.29 | 26.85 ± 5.25 | 0.016 | 1st trimester |
Height (cm) | 1.61 ± 0.08 | 1.61 ± 0.06 | 0.985 | 1st trimester |
Family history of diabetes | 7 (87.50%) | 5 (55.55%) | 0.294 | 1st trimester |
Fasting glucose (mg/dL) | 105.91 ± 9.56 | 81.07 ± 6.79 | <0.001 | 2nd to 3rd trimester |
One-hour glucose 75 g (mg/dL) | 211.65 ± 49.33 | 129.73 ± 31.88 | <0.001 | 2nd to 3rd trimester |
Two-hour glucose 75 g (mg/dL) | 194.71 ± 62.03 | 109.80 ± 22.08 | 0.001 | 2nd to 3rd trimester |
Positive SARS-CoV2 IgG at third trimester ** | 4 (50.00%) | 4 (57.14%) | 1.000 | 3rd trimester |
Gestational week at delivery ** | 38.00 ± 0.75 | 38.50 ± 1.19 | 0.334 | 3rd trimester |
Neonate | ||||
% Females ** | 3 (37.50%) | 5 (75.00%) | 0.315 | Delivery |
Weight (Kg) ** | 3.51 ± 0.54 | 3.42 ± 0.20 | 0.645 | Delivery |
Height (cm) ** | 50.25 ± 2.18 | 49.50 ± 2.00 | 0.486 | Delivery |
Abdominal circumference (cm) *** | 31.90 ± 2.12 | 33.10 ± 2.03 | 0.397 | Delivery |
Macrosomia *** | 3 (37.50%) | 1 (12.50%) | 0.569 | Delivery |
Third Trimester | Cesarean Section | |||||
---|---|---|---|---|---|---|
Taxa | GDM | Control | p | GDM | Control | p |
Firmicutes | 69.43 ± 10.06 | 56.11 ± 10.36 | <0.05 | 59.34 ± 10.97 | 56.76 ± 14.06 | 0.689 |
Lachnospiraceae | 36.08 ± 9.55 | 19.24 ± 9.99 | <0.05 | 15.54 ± 10.21 | 20.13 ± 18.95 | 0.556 |
Ruminococcaceae | 19.01 ± 8.26 | 8.93 ± 7.48 | <0.05 | 8.36 ± 5.36 | 6.00 ± 5.53 | 0.401 |
Veillonellaceae | 1.55 ± 1.30 | 0.37 ± 0.26 | <0.05 | 2.44 ± 1.81 | 1.08 ± 0.67 | 0.067 |
Peptostreptococcaceae | 0.29 ± 0.36 | 3.50 ± 2.72 | <0.05 | 1.03 ± 0.98 | 1.04 ± 1.07 | 0.987 |
Blautia | 7.97 ± 3.83 | 2.93 ± 2.97 | <0.05 | 2.98 ± 2.44 | 3.12 ± 3.80 | 0.505 |
Faecalibacterium | 7.48 ± 3.42 | 2.86 ± 2.13 | <0.05 | 3.32 ± 1.98 | 3.03 ± 2.68 | 1.000 |
Roseburia | 6.62 ± 4.71 | 1.69 ± 1.34 | <0.05 | 1.82 ± 1.84 | 3.16 ± 3.78 | 0.380 |
Anaerococcus | 0.07 ± 0.13 | 0.85 ± 0.93 | <0.05 | 3.13 ± 1.65 | 3.52 ± 3.07 | 0.760 |
Finegoldia | 0.03 ± 0.06 | 0.69 ± 1.07 | <0.05 | 3.47 ± 1.40 | 2.21 ± 1.95 | 0.162 |
Control | GDM | |||||
---|---|---|---|---|---|---|
Taxa | Third Trimester | Cesarean Section | p | Third Trimester | Cesarean Section | p |
Firmicutes | 56.11 ± 10.36 | 56.76 ± 14.06 | 0.925 | 69.43 ± 10.06 | 59.34 ± 10.97 | 0.076 |
Lachnospiraceae | 19.24 ± 9.99 | 20.13 ± 18.95 | 0.919 | 36.08 ± 9.55 | 15.54 ± 10.21 | <0.05 |
Ruminococcaceae | 8.93 ± 7.48 | 6.00 ± 5.53 | 0.414 | 19.01 ± 8.26 | 8.36 ± 5.36 | <0.05 |
Veillonellaceae | 0.37 ± 0.26 | 1.08 ± 0.67 | <0.05 | 1.55 ± 1.30 | 2.44 ± 1.81 | 0.278 |
Peptostreptococcaceae | 3.50 ± 2.72 | 1.04 ± 1.07 | 0.108 | 0.29 ± 0.36 | 1.03 ± 0.98 | 0.161 |
Blautia | 2.93 ± 2.97 | 3.12 ± 3.80 | 0.852 | 7.97 ± 3.83 | 2.98 ± 2.44 | <0.05 |
Faecalibacterium | 2.86 ± 2.13 | 3.03 ± 2.68 | 0.899 | 7.48 ± 3.42 | 3.32 ± 1.98 | <0.05 |
Roseburia | 1.69 ± 1.34 | 3.16 ± 3.78 | 0.382 | 6.62 ± 4.71 | 1.82 ± 1.84 | <0.05 |
Anaerococcus | 0.85 ± 0.93 | 3.52 ± 3.07 | 0.065 | 0.07 ± 0.13 | 3.13 ± 1.65 | <0.05 |
Finegoldia | 0.69 ± 1.07 | 2.21 ± 1.95 | 0.113 | 0.03 ± 0.06 | 3.47 ± 1.40 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lizárraga, D.; García-Gasca, A.; García-Gasca, T.; Lund, G.; Guerrero, A.; Peraza-Manjarrez, E.; Gómez-Gil, B. A Pilot Study on the Fecal Microbiota in Mexican Women with Gestational Diabetes Mellitus and Their Newborns. Diabetology 2024, 5, 464-475. https://doi.org/10.3390/diabetology5050034
Lizárraga D, García-Gasca A, García-Gasca T, Lund G, Guerrero A, Peraza-Manjarrez E, Gómez-Gil B. A Pilot Study on the Fecal Microbiota in Mexican Women with Gestational Diabetes Mellitus and Their Newborns. Diabetology. 2024; 5(5):464-475. https://doi.org/10.3390/diabetology5050034
Chicago/Turabian StyleLizárraga, Dennise, Alejandra García-Gasca, Teresa García-Gasca, Gertrud Lund, Abraham Guerrero, Efrén Peraza-Manjarrez, and Bruno Gómez-Gil. 2024. "A Pilot Study on the Fecal Microbiota in Mexican Women with Gestational Diabetes Mellitus and Their Newborns" Diabetology 5, no. 5: 464-475. https://doi.org/10.3390/diabetology5050034
APA StyleLizárraga, D., García-Gasca, A., García-Gasca, T., Lund, G., Guerrero, A., Peraza-Manjarrez, E., & Gómez-Gil, B. (2024). A Pilot Study on the Fecal Microbiota in Mexican Women with Gestational Diabetes Mellitus and Their Newborns. Diabetology, 5(5), 464-475. https://doi.org/10.3390/diabetology5050034