Impact of Personal Health Records on Diabetes Management: A Propensity Score Matching Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Patients, Study Design, and Data Collection
2.3. Exclusion Criteria
2.4. Group Settings
2.5. Application Features
2.6. Primary and Secondary Outcomes
2.7. Propensity Score Matching
2.8. Statistical Analyses
3. Results
3.1. Study Characteristics
3.2. Changes in Glycemic Outcomes in All Participants
3.3. Propensity Score Matching
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PHR | Personal Health Record |
A1c | HbA1c |
TIR | Time In Range |
TAR | Time Above Range |
TBR | Time Below Range |
BMI | Body Mass Index |
CGM | Continuous Glucose Monitor |
Appendix A
Appendix A.1
Appendix A.2
Total | PHR (+) | PHR (-) | p Value | |
---|---|---|---|---|
N = 212 | N = 25 | N = 187 | ||
Age (years) | 63.6 ± 14.9 | 52.2 ± 18.3 | 65 ± 1.0 | 0.0005 |
Age (<18 years) | 0 | 0 | 0 | |
Age (18–65 years) | 108 (50.9) | 15 (0.6) | 93 (49.8) | |
Age (>65 years) | 104 (49.1) | 10 (0.4) | 94 (50.2) | |
Sex (Female) | 88 (41.5) | 7 (28.0) | 81 (43.3) | 0.136 |
BMI (kg/m2) | 23.6 ± 6.1 | 25.8 ± 7.2 | 23.4 ± 0.4 | 0.159 |
Type (T2DM) | 136 (64.2) | 15 (60.0) | 121 (64.7) | 0.056 |
DM medication (Insulin) | 0.391 | |||
Basal supported oral therapy | 36 (17.0) | 6 (24.0) | 30 (16.0) | |
Basal-bolus treatment | 164 (77.4) | 19 (76.0) | 145 (77.5) | |
CSII/SAP | 7 (3.3) | 0 | 7 (3.7) | |
Insulin dose | 28.05 ± 17.8 | 29.1 ± 4.4 | 27.9 ± 1.3 | 0.997 |
Number of smart insulin user | 26 | 12 | 14 | <0.0001 |
Glucose ave | 170.42 ± 45.7 | 187.92 ± 62.1 | 168.15 ± 42.7 | 0.317 |
HbA1c (%) | 7.86 ± 1.3 | 8.2 ± 1.8 | 7.8 ± 1.2 | 0.65 |
TIR (%) | 60.87 ± 21.9 | 53 ± 30.2 | 61.7 ± 1.5 | 0.41 |
TAR (%) | 37.2 ± 23.6 | 45.4 ± 31.4 | 36.1 ± 22.2 | 0.339 |
TBR (%) | 3.36 ± 5.9 | 1.55 ± 3.3 | 3.62 ± 6.2 | 0.017 |
MAGEave | 121.14 ± 38.3 | 116.32 ± 31.9 | 121.76 ± 39.1 | 0.532 |
CV | 33.14 ± 8.0 | 29.3 ± 6.3 | 33.6 ± 0.6 | 0.004 |
Number of Hypoglycemia per 2 weeks | 5.12 ± 8.15 | 4.08 ± 8.40 | 5.40 ± 8.13 | 0.07 |
Cigarrete | 0.374 | |||
Never smoker | 129 (60.8) | 15 (60.0) | 114 (61.0) | |
Ex-smoker | 59 (27.8) | 8 (32.0) | 51 (27.3) | |
Current smoker | 37 (17.5) | 1 (4.0) | 36 (19.3) | |
Alcohol | 98 (46.2) | 7 (28.0) | 91 (48.7) | 0.345 |
Exercise | 0.003 | |||
regulary | 71 (33.5) | 3 (12.0) | 68 (36.4) | |
rare | 102 (48.1) | 22 (88.0) | 81 (43.3) | |
Receiving Medical Nutritional therapy | 27 (12.7) | 8 (32.0) | 19 (10.2) | 0.048 |
Appendix A.3
Total | PHR (+) | PHR (−) | p Value | |
---|---|---|---|---|
N = 212 | N = 25 | N = 187 | ||
ΔA1c | −0.30 ± 0.911 | −0.89 ± 1.34 | −0.22 ± 1.02 | 0.004 |
ΔTIR | 0.95 ± 23.4 | 17.3 ± 27.2 | −1.11 ± 17.8 | 0.002 |
ΔTAR | −0.42 ± 20.8 | −17.8 ± 27.4 | 1.76 ± 18.7 | 0.001 |
ΔTBR | −0.53 ± 4.87 | 0.44 ± 1.61 | −0.65 ± 5.14 | 0.064 |
ΔTDD | 0.97 ± 5.79 | 4.36 ± 9.81 | 0.50 ± 5.40 | 0.957 |
ΔBW | −0.26 ± 1.86 | −0.19 ± 4.43 | −0.27 ± 1.80 | 0.957 |
Change in the number of hypoglycemia | 0.55 ± 3.62 | −0.16 ± 3.21 | 0.65 ± 4.23 | 0.453 |
Appendix A.4
V1 | p | V2 | p | |||
---|---|---|---|---|---|---|
PHR (+) | PHR (−) | PHR (+) | PHR (−) | |||
AST (IU/L) | 23.8 ± 15.1 | 23.3 ± 9.00 | 0.440 | 23.1 ± 12.2 | 24.5 ± 13.1 | 0.231 |
ALT (IU/L) | 24.6 ± 19.0 | 22.3 ± 15.9 | 0.870 | 25.7 ± 25.8 | 21.4 ± 12.6 | 0.942 |
T-C (mg/dL) | 201.2 ± 11.5 | 199.0 ± 4.20 | 0.990 | 198.8 ± 41.3 | 203.3 ± 55.1 | 0.863 |
HDL-C (mg/dL) | 68.7 ± 22.0 | 64.6 ± 20.8 | 0.431 | 65.3 ± 21.3 | 71.4 ± 23.7 | 0.209 |
LDL-C (mg/dL) | 113.5 ± 49.1 | 109.6 ± 36.8 | 0.762 | 118.4 ± 42.8 | 113.0 ± 42.9 | 0.442 |
TG (mg/dL) | 177.1 ± 136.7 | 138.4 ± 107.0 | 0.221 | 172.9 ± 95.6 | 137.4 ± 100.8 | 0.053 |
Cr (mg/dL) | 0.97 ± 0.80 | 1.04 ± 0.87 | 0.042 | 1.25 ± 1.75 | 1.04 ± 0.93 | 0.192 |
Appendix B
Patient ID | BMI-1 | BMI-2 | ΔA1c | ΔTIR | ΔTAR | ΔTBR | ΔBW | ΔBW (%) | ΔTDD | OHA Arrengement | Sex | Age | Type | SIP | MNT | PMP | Cigarette | Alcohol | Exercise | AST-1 (IU/L) | ALT-1 (IU/L) | Tcho-1 (mg/dL) | TG-1 (mg/dL) | Cre-1 (mg/dL) | HDLC-1 (mg/dL) | LDLC-1 (mg/dL) | AST-2 (IU/L) | ALT-2 (IU/L) | Tcho-2 (mg/dL) | TG-2 (mg/dL) | Cre-2 (mg/dL) | HDLC-2 (mg/dL) | LDLC-2 (mg/dL) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No.1 | 36.3 | 35 | -0.6 | 31 | -31 | 0 | -3.5 | -3.5 | 19 | M | 28 | T2 | 1 | 1 | 1 | 0 | 1 | 0 | 36 | 77 | 228 | 455 | 0.52 | 45 | 0 | 39 | 45 | 204 | 201 | 0.78 | 64 | 100 | |
No.2 | 28.4 | 28.7 | -0.2 | 15 | -18 | 3 | 1 | 1.23 | 12 | Change from Luseogliflozin 5 mg to Dapagliflozin 10 mg | M | 53 | T1 | 0 | 1 | 0 | 1 | 1 | 0 | 16 | 17 | 157 | 318 | 1.52 | 35 | 58 | 16 | 15 | 167 | 274 | 1.66 | 37 | 75 |
No.3 | 25 | 25.7 | 1.1 | 13 | -14 | 1 | 2 | 2.85 | 2 | M | 69 | T2 | 1 | 0 | 0 | 0 | 1 | 0 | 6 | 9 | 114 | 133 | 2.52 | 37 | 50 | 6 | 8 | 119 | 108 | 2.97 | 40 | 57 | |
No.4 | 48.2 | 49.4 | -1 | 12 | -12 | 0 | 0 | 0 | 8 | Add Imeglimin 1000 mg | M | 31 | Others | 0 | 0 | 1 | 0 | 0 | 1 | 24 | 31 | 202 | 243 | 0.48 | 70 | 83 | 20 | 27 | 160 | 379 | 0.48 | 59 | 25 |
No.5 | 25.5 | 23 | -3 | 73 | -73 | 0 | -5.9 | -8.43 | -8 | Withdraw Metformin, Pioglitazone, GLUBES Combination Tablets | M | 57 | T2 | 0 | 1 | 0 | 0 | 0 | 0 | 19 | 22 | 192 | 116 | 1.35 | 53 | 122 | 24 | 34 | 178 | 134 | 1.6 | 44 | 110 |
No.6 | 31.7 | 33.9 | -4.1 | 55 | -56 | 1 | 6.1 | 6.78 | -8 | M | 68 | T2 | 0 | 1 | 0 | 1 | 1 | 0 | 80 | 77 | 224 | 202 | 0.74 | 67 | 195 | 34 | 33 | 183 | 251 | 0.8 | 75 | 81 | |
No.7 | 30.1 | 30.1 | -0.6 | 13 | -13 | 0 | 0 | 0 | 13 | Add dapagliflozin | F | 52 | T1 | 1 | 0 | 0 | 0 | 1 | 0 | 26 | 29 | 254 | 131 | 0.85 | 50 | 185 | 22 | 24 | 248 | 173 | 0.84 | 46 | 176 |
No.8 | 37.7 | 36.1 | -1.6 | 50 | -54 | 4 | -4.6 | -4.42 | 10 | F | 54 | T2 | 1 | 1 | 1 | 0 | 1 | 0 | 14 | 16 | 329 | 575 | 3.9 | 65 | 173 | 13 | 15 | 233 | 265 | 8.88 | 61 | 123 | |
No.9 | 26.9 | 26.9 | -1.2 | -1 | 1 | 0 | 0 | 0 | 7 | F | 74 | T2 | 1 | 0 | 0 | 0 | 0 | 0 | 19 | 13 | 189 | 173 | 0.85 | 66 | 88 | 20 | 14 | 176 | 88 | 0.9 | 59 | 113 | |
No.10 | 27 | 27 | 0 | -7 | 5 | 2 | 0 | 0 | 0 | M | 25 | T1 | 0 | 0 | 0 | 0 | 1 | 0 | - | - | 257 | 110 | - | 92 | 143 | 13 | 12 | 241 | 253 | 0.93 | 59 | 132 | |
No.11 | 30.4 | 30.3 | -1.2 | 12 | -12 | 0 | -0.2 | -0.26 | 17 | M | 68 | T2 | 0 | 0 | 0 | 1 | 1 | 1 | 28 | 30 | 161 | 167 | 0.58 | 36 | 92 | 19 | 21 | 244 | 209 | 0.54 | 47 | 156 |
References
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.I.G.; Devries, J.H.; Hess-Fischl, A.; Hirsch, I.B.; Kirkman, M.S.; Klupa, T.; Ludwig, B.; Nørgaard, K.; Pettus, J.; Renard, E.; et al. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2021, 44, 2589–2625. [Google Scholar] [CrossRef] [PubMed]
- The Japan Diabetes Society (Ed.) Diabetes Treatment Guide; Japan Diabetes Society: Tokyo, Japan, 2022–2023; p. 34. [Google Scholar]
- Choe, H.J.; Rhee, E.J.; Won, J.C.; Park, K.S.; Lee, W.Y.; Cho, Y.M. Effects of Patient-Driven Lifestyle Modification Using Intermittently Scanned Continuous Glucose Monitoring in Patients with Type 2 Diabetes: Results from the Randomized Open-Label PDF Study. Diabetes Care 2022, 45, 2224–2230. [Google Scholar] [CrossRef] [PubMed]
- New, J.P.; Mason, J.M.; Freemantle, N.; Teasdale, S.; Wong, L.; Bruce, N.J.; Burns, J.A.; Gibson, J.M. Educational Outreach in Diabetes to Encourage Practice Nurses to Use Primary Care Hypertension and Hyperlipidaemia Guidelines (EDEN): A Randomized Controlled Trial. Diabet. Med. 2004, 21, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Welch, G.; Zagarins, S.E.; Santiago-Kelly, P.; Rodriguez, Z.; Bursell, S.E.; Rosal, M.C.; Gabbay, R.A. An Internet-Based Diabetes Management Platform Improves Team Care and Outcomes in an Urban Latino Population. Diabetes Care 2015, 38, 561–567. [Google Scholar] [CrossRef]
- Hamaguchi, M.; Nojiri, T.; Okamura, T.; Hashimoto, Y.; Hanai, A.; Narisawa, S.; Ushigome, E.; Nakanishi, N.; Fukui, M. Status of Online Diet Management Program Users in Japan during the 2020 Coronavirus Disease 2019 Pandemic. J. Clin. Biochem. Nutr. 2021, 69, 305–310. [Google Scholar] [CrossRef]
- Kesavadev, J.; Mohan, V. Reducing the Cost of Diabetes Care with Telemedicine, Smartphone, and Home Monitoring. J. Indian Inst. Sci. 2023, 103, 231–242. [Google Scholar] [CrossRef]
- Kitazawa, M.; Takeda, Y.; Hatta, M.; Horikawa, C.; Sato, T.; Osawa, T.; Ishizawa, M.; Suzuki, H.; Matsubayashi, Y.; Fujihara, K.; et al. Lifestyle Intervention with Smartphone App and IsCGM for People at High Risk of Type 2 Diabetes: Randomized Trial. J. Clin. Endocrinol. Metab. 2024, 109, 1060–1070. [Google Scholar] [CrossRef]
- Fisher-Grace, K.; Turk, M.T.; Anthony, M.K.; Chia, L.R. Use of Personal Health Records to Support Diabetes Self-management: An Integrative Review. Comput. Inf. Nurs. 2021, 39, 298–305. [Google Scholar] [CrossRef]
- Kim, G.; Kim, S.; Lee, Y.B.; Jin, S.M.; Hur, K.Y.; Kim, J.H. BMC Med. A randomized controlled trial of an app-based intervention on physical activity and glycemic control in people with type 2 diabetes. BMC Med. 2024, 22, 185. [Google Scholar] [CrossRef]
- Seo, D.; Yu Park, R.; Lee, Y.; Kim, J.Y.; Park, J.Y.; Lee, J.H. The Use of Mobile Personal Health Records for Hemoglobin A1c Regulation in Patients with Diabetes: Retrospective Observational Study. J. Med. Internet Res. 2020, 22, e15372. [Google Scholar] [CrossRef] [PubMed]
- Brands, M.R.; Gouw, S.C.; Beestrum, M.; Cronin, R.M.; Fijnvandraat, K.; Badawy, S.M. Patient-Centered Digital Health Records and Their Effects on Health Outcomes: Systematic Review. J. Med. Internet Res. 2022, 24, e43086. [Google Scholar] [CrossRef] [PubMed]
- Morris, T.; Aspinal, F.; Ledger, J.; Li, K.; Gomes, M. The Impact of Digital Health Interventions for the Management of Type 2 Diabetes on Health and Social Care Utilisation and Costs: A Systematic Review. PharmacoEconomics-Open 2023, 7, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.M. Quantifying Input Behaviors That Influence Clinical Outcomes in Diabetes and Other Chronic Illnesses. J. Diabetes Sci. Technol. 2022, 16, 786–787. [Google Scholar] [CrossRef] [PubMed]
- Toshio, I. Survey of PHR App Users Among Hypertension Patients at Our Hospital. Jpn. Physicians Assoc. 2019, 34, 307–313. (In Japanese) [Google Scholar]
- Waki, K.; Fujita, H.; Uchimura, Y.; Omae, K.; Aramaki, E.; Kato, S.; Lee, H.; Kobayashi, H.; Kadowaki, T.; Ohe, K. DialBetics: A Novel Smartphone-Based Self-Management Support System for Type 2 Diabetes Patients. J. Diabetes Sci. Technol. 2014, 8, 209–215. [Google Scholar] [CrossRef]
- Waki, K.; Aizawa, K.; Kato, S.; Fujita, H.; Lee, H.; Kobayashi, H.; Ogawa, M.; Mouri, K.; Kadowaki, T.; Ohe, K. Dial Betics with a Multimedia Food Recording Tool, Food Log: Smartphone-Based Self-Management for Type 2 Diabetes. J. Diabetes Sci. Technol. 2015, 9, 534–540. [Google Scholar] [CrossRef]
- Kumbara, A.B.; Iyer, A.K.; Green, C.R.; Jepson, L.H.; Leone, K.; Layne, J.E.; Shomali, M. Impact of a Combined Continuous Glucose Monitoring–Digital Health Solution on Glucose Metrics and Self-Management Behavior for Adults with Type 2 Diabetes: Real-World, Observational Study. JMIR Diabetes 2023, 8, e47638. [Google Scholar] [CrossRef]
- Franz, M.J.; Boucher, J.L.; Rutten-Ramos, S.; VanWormer, J.J. Lifestyle Weight-Loss Intervention Outcomes in Overweight and Obese Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Acad. Nutr. Diet. 2015, 115, 1447–1463. [Google Scholar] [CrossRef]
- Møller, G.; Andersen, H.K.; Snorgaard, O. A Systematic Review and Meta-Analysis of Nutrition Therapy Compared with Dietary Advice in Patients with Type 2 Diabetes. Am. J. Clin. Nutr. 2017, 106, 1394–1400. [Google Scholar] [CrossRef]
- Sodero, G.; Rigante, D.; Pane, L.C.; Sessa, L.; Quarta, L.; Candelli, M.; Cipolla, C. Cardiometabolic Risk Assessment in a Cohort of Children and Adolescents Diagnosed with Hyperinsulinemia. Diseases 2024, 12, 119. [Google Scholar] [CrossRef] [PubMed]
Total | PHR (+) | PHR (−) | p Value | |
---|---|---|---|---|
N = 63 | N = 21 | N = 42 | ||
Age (years) | 58 ± 14.7 | 58 ± 13.3 | 58 ± 15.5 | 0.907 |
Sex (Female) | 14 (22.2) | 6 (28.6) | 8 (19.0) | 0.391 |
BMI (kg/m2) | 24.6 ± 6.28 | 25.1 ± 6.47 | 24.4 ± 6.25 | 0.625 |
Type (T2DM) | 41 (65.1) | 15 (71.4) | 26 (61.9) | 0.455 |
DM medication (Insulin) | 0.391 | |||
Basal supported oral therapy | 14 (22.2) | 6 (28.6) | 8 (19.1) | |
Basal-bolus treatment | 49 (77.8) | 15 (71.4) | 34 (81.0) | |
CSII/SAP | 0 | 0 | 7 (3.70) | |
Total daily dose (TDD) | 29.0 ± 19.1 | 24.0 ± 17.9 | 31.6 ± 19.4 | 0.085 |
Number of smart insulin user | 12 | 10 | 2 | <0.001 |
Glucose ave | 176.9 ± 52.2 | 184.4 ± 58.2 | 173.1 ± 49.2 | 0.662 |
HbA1c (%) | 7.94 ± 1.36 | 8.20 ± 1.64 | 7.80 ± 1.18 | 0.620 |
TIR (%) | 56.7 ± 22.4 | 54.5 ± 28.7 | 57.8 ± 18.8 | 0.903 |
TAR (%) | 40.2 ± 24.6 | 44.0 ± 30.0 | 38.3 ± 21.6 | 0.720 |
TBR (%) | 3.13 ± 6.08 | 1.50 ± 3.46 | 3.95 ± 6.93 | 0.062 |
MAGEave | 124.0 ± 38.4 | 116.5 ± 30.0 | 127.8 ± 41.8 | 0.322 |
CV | 33.1 ± 8.00 | 29.3 ± 5.74 | 33.9 ± 8.75 | 0.006 |
Number of Hypoglycemia per 2 weeks | 4.87 ± 8.15 | 4.06 ± 8.40 | 5.28 ± 8.02 | 0.070 |
Cigarrete | 0.117 | |||
Never smoker | 38 (60.3) | 11 (52.4) | 27 (64.3) | |
Ex-smoker | 17 (27.0) | 8 (38.1) | 9 (21.4) | |
Current smoker | 8 (12.7) | 1 (4.76) | 7 (16.7) | |
Alcohol | 26 (41.3) | 10 (47.6) | 16 (38.1) | 0.246 |
Exercise | <0.001 | |||
Regulary | 16 (25.4) | 2 (9.5) | 14 (33.3) | |
Rare | 32 (50.8) | 18 (85.7) | 14 (33.3) | |
Receiving Medical Nutritional therapy | 11 (17.5) | 5 (23.8) | 6 (14.3) | 0.348 |
Total | PHR (+) | PHR (−) | p Value | |
---|---|---|---|---|
N = 63 | N = 21 | N = 42 | ||
ΔA1c | −0.42 ± 1.43 | −0.83 ± 1.40 | −0.22 ± 1.44 | 0.023 |
ΔTIR | 6.91 ± 24.3 | 17.2 ± 27.6 | 1.76 ± 21.0 | 0.016 |
ΔTAR | −3.7 ± 24.8 | −17.6 ± 27.9 | −1.42 ± 21.4 | 0.013 |
ΔTBR | −0.05 ± 2.70 | 0.42 ± 1.71 | −0.29 ± 3.06 | 0.324 |
ΔBW | −1.23 ± 7.20 | −0.51 ± 1.96 | −1.60 ± 8.71 | 0.578 |
Standardized Regression Coefficient | p | |
---|---|---|
MNT (+/−) | −0.73 | 0.029 |
ΔA1c | −0.51 | 0.171 |
ΔTIR | 0.32 | 0.550 |
ΔTAR | 0.89 | 0.099 |
ΔTDD | −0.31 | 0.145 |
Age | 0.06 | 0.818 |
Sex (Female) | 0.22 | 0.374 |
Type (T2DM) | −0.40 | 0.138 |
Cigarette (+/−) | 0.58 | 0.039 |
Alcohol (+/−) | 1.07 | 0.004 |
Exercise (+/−) | −0.78 | 0.032 |
PMP (+/−) | −0.09 | 0.685 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ono, Y.; Okada, H.; Kitagawa, N.; Majima, S.; Okamura, T.; Senmaru, T.; Ushigome, E.; Nakanishi, N.; Hamaguchi, M.; Fukui, M. Impact of Personal Health Records on Diabetes Management: A Propensity Score Matching Study. Diabetology 2024, 5, 640-655. https://doi.org/10.3390/diabetology5070047
Ono Y, Okada H, Kitagawa N, Majima S, Okamura T, Senmaru T, Ushigome E, Nakanishi N, Hamaguchi M, Fukui M. Impact of Personal Health Records on Diabetes Management: A Propensity Score Matching Study. Diabetology. 2024; 5(7):640-655. https://doi.org/10.3390/diabetology5070047
Chicago/Turabian StyleOno, Yuriko, Hiroshi Okada, Noriyuki Kitagawa, Saori Majima, Takuro Okamura, Takafumi Senmaru, Emi Ushigome, Naoko Nakanishi, Masahide Hamaguchi, and Michiaki Fukui. 2024. "Impact of Personal Health Records on Diabetes Management: A Propensity Score Matching Study" Diabetology 5, no. 7: 640-655. https://doi.org/10.3390/diabetology5070047
APA StyleOno, Y., Okada, H., Kitagawa, N., Majima, S., Okamura, T., Senmaru, T., Ushigome, E., Nakanishi, N., Hamaguchi, M., & Fukui, M. (2024). Impact of Personal Health Records on Diabetes Management: A Propensity Score Matching Study. Diabetology, 5(7), 640-655. https://doi.org/10.3390/diabetology5070047