Optimized Hybrid Deep Learning Framework for Early Detection of Alzheimer’s Disease Using Adaptive Weight Selection
Abstract
:1. Introduction
2. Related Work for Alzheimer Disease Detection
2.1. Machine Learning-Based Alzheimer’s Disease Detection
2.2. Deep Learning-Based Alzheimer’s Disease Detection
2.3. Ensemble Learning-Based Alzheimer’s Disease Detection
3. Proposed Model for Alzheimer Detection
3.1. Dataset and Data Pre-Processing
Data Preparation and Handling Class Imbalance
- Step1: Splitting the Test Set
- Step 2: Addressing Class Imbalance
3.2. Deep Learning Model
3.2.1. EfficientNetB0
- -
- d is the depth (number of layers);
- -
- w is the width (number of channels per layer);
- -
- r is the image resolution;
- -
- , and are constants that control how depth, width, and resolution are scaled, respectively;
- -
- is the scaling coefficient, which controls overall scaling based on available resources.
3.2.2. EfficientNetB3V2
3.2.3. ResNet50
- -
- x is the input to the residual block;
- -
- is the learned residual mapping (the result of the convolution layers);
- -
- y is the output of the block.
3.2.4. Inception-ResNet50
3.2.5. MobileNet
- -
- X is the input;
- -
- and are depthwise and pointwise convolution filters, respectively;
- -
- is the depthwise convolution (operating separately on each channel);
- -
- is the pointwise convolution (combining outputs from depthwise convolution).
3.2.6. ConvNet (Convolutional Neural Network)
- -
- x is the input image or feature map;
- -
- w represents the learned weights (filters);
- -
- is the bias for filter k;
- -
- y is the output feature map.
3.3. Combination of Two Models: Average and Weighted Average Techniques
- Step 1: Average Combination Technique
- Step 2: Weighted Average Combination based on a Selection Technique:
3.4. Weight Selection Using Cuckoo Search for Combining Deep Learning Models
3.4.1. Cuckoo Search Algorithm Overview
3.4.2. Applying Cuckoo Search for Weight Selection
3.4.3. Advantages of Cuckoo Search for Model Combination
4. Results and Discussions
- Scenario 1: Alzheimer’s disease detection based on deep learning models;
- Scenario 2: Alzheimer’s disease detection classification based on hybrid deep learning models;
- Scenario 3: Alzheimer’s disease detection classification based on the weight selection method.
4.1. Evaluation Metrics
4.2. Performance Evaluation and Comparative Analysis of Deep Learning Models for Alzheimer’s Disease Detection
Evaluation of Deep Learning Models for Alzheimer’s Disease Detection Across Multiple Classes
4.3. Alzheimer Detection Based on an Hybrid Deep Learning Model
Enhanced Alzheimer Detection Through Optimized Weight Selection in Hybrid Deep Learning Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krichen, M.; Abdalzaher, M.S. Performance enhancement of artificial intelligence: A survey. J. Netw. Comput. Appl. 2024, 104034. [Google Scholar] [CrossRef]
- Mirzaei, G.; Adeli, H. Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia. Biomed. Signal Process. Control 2022, 72, 103293. [Google Scholar] [CrossRef]
- Alroobaea, R.; Mechti, S.; Haoues, M.; Rubaiee, S.; Ahmed, A.; Andejany, M.; Bragazzi, N.L.; Sharma, D.K.; Kolla, B.P.; Sengan, S. Alzheimer’s Disease Early Detection Using Machine Learning Techniques. Wirel. Pers. Commun. 2021. [Google Scholar] [CrossRef]
- Gasmi, K.; Ben Aoun, N.; Alsalem, K.; Ltaifa, I.B.; Alrashdi, I.; Ammar, L.B.; Mrabet, M.; Shehab, A. Enhanced Brain Tumor Diagnosis Using Combined Deep Learning Models and Weight Selection Technique. Front. Neuroinform. 2024, 18, 1444650. [Google Scholar] [CrossRef]
- Ding, Y.; Sohn, J.H.; Kawczynski, M.G.; Trivedi, H.; Harnish, R.; Jenkins, N.W.; Lituiev, D.; Copeland, T.P.; Aboian, M.S.; Mari Aparici, C.; et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology 2019, 290, 456–464. [Google Scholar] [CrossRef]
- Murugan, S.; Venkatesan, C.; Sumithra, M.; Gao, X.Z.; Elakkiya, B.; Akila, M.; Manoharan, S. DEMNET: A deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images. IEEE Access 2021, 9, 90319–90329. [Google Scholar] [CrossRef]
- Kundaram, S.S.; Pathak, K.C. Deep learning-based Alzheimer disease detection. In Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems: MCCS, Ranchi, India, 11–12 May 2019; Springer: Berlin/Heidelberg, Germany, 2021; pp. 587–597. [Google Scholar]
- Shahin, O.R.; Gasmi, K.; Krichen, M.; Alamro, M.A.; Mihoub, A.; Ammar, L.B.; Tawashi, M.A. Optimized automated blood cells analysis using Enhanced Greywolf Optimization with integrated attention mechanism and YOLOv5. Alex. Eng. J. 2024, 109, 58–70. [Google Scholar] [CrossRef]
- Shen, T.; Jiang, J.; Li, Y.; Wu, P.; Zuo, C.; Yan, Z. Decision supporting model for one-year conversion probability from MCI to AD using CNN and SVM. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, Hawaii, 17–21 July 2018; pp. 738–741. [Google Scholar]
- Dwivedi, S.; Goel, T.; Sharma, R.; Murugan, R. Structural MRI based Alzheimer’s disease prognosis using 3D convolutional neural network and support vector machine. In Proceedings of the 2021 Advanced Communication Technologies and Signal Processing (ACTS), Virtual, 15–17 December 2021; pp. 1–4. [Google Scholar]
- Beheshti, I.; Demirel, H.; Matsuda, H.; Alzheimer’s Disease Neuroimaging Initiative. Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Comput. Biol. Med. 2017, 83, 109–119. [Google Scholar] [CrossRef]
- Elahifasaee, F. Optimized SVM using AdaBoost and PSO to classify brain images of MR. In Proceedings of the 2022 International Conference on Machine Vision and Image Processing (MVIP), Ahvaz, Iran, 23–24 February 2022; pp. 1–5. [Google Scholar]
- Zhang, Y.; Wang, S.; Phillips, P.; Dong, Z.; Ji, G.; Yang, J. Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC. Biomed. Signal Process. Control 2015, 21, 58–73. [Google Scholar] [CrossRef]
- Hojjati, S.H.; Ebrahimzadeh, A.; Khazaee, A.; Babajani-Feremi, A.; Alzheimer’s Disease Neuroimaging Initiative. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J. Neurosci. Methods 2017, 282, 69–80. [Google Scholar] [CrossRef]
- Archana, B.; Kalirajan, K. Alzheimer’s Disease Classification using Convolutional Neural Networks. In Proceedings of the 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA), Uttarkhand, India, 14–16 March 2023; pp. 1044–1048. [Google Scholar]
- Dimitriadis, S.I.; Liparas, D.; Tsolaki, M.N.; Alzheimer’s Disease Neuroimaging Initiative. Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (ADNI) database. J. Neurosci. Methods 2018, 302, 14–23. [Google Scholar] [PubMed]
- Donnelly-Kehoe, P.A.; Pascariello, G.O.; Gómez, J.C.; Alzheimer’s Disease Neuroimaging Initiative. Looking for Alzheimer’s Disease morphometric signatures using machine learning techniques. J. Neurosci. Methods 2018, 302, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Farooq, A.; Anwar, S.; Awais, M.; Rehman, S. A deep CNN based multi-class classification of Alzheimer’s disease using MRI. In Proceedings of the 2017 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 18–20 October 2017; pp. 1–6. [Google Scholar]
- Liu, M.; Cheng, D.; Wang, K.; Wang, Y.; Initiative, A.D.N. Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics 2018, 16, 295–308. [Google Scholar] [CrossRef]
- Khan, N.M.; Abraham, N.; Hon, M. Transfer learning with intelligent training data selection for prediction of Alzheimer’s disease. IEEE Access 2019, 7, 72726–72735. [Google Scholar] [CrossRef]
- Mehmood, A.; Maqsood, M.; Bashir, M.; Shuyuan, Y. A deep Siamese convolution neural network for multi-class classification of Alzheimer disease. Brain Sci. 2020, 10, 84. [Google Scholar] [CrossRef]
- Orouskhani, M.; Zhu, C.; Rostamian, S.; Zadeh, F.S.; Shafiei, M.; Orouskhani, Y. Alzheimer’s disease detection from structural MRI using conditional deep triplet network. Neurosci. Inform. 2022, 2, 100066. [Google Scholar] [CrossRef]
- Abrol, A.; Bhattarai, M.; Fedorov, A.; Du, Y.; Plis, S.; Calhoun, V.; for the Alzheimer’s Disease Neuroimaging Initiative. Deep residual learning for neuroimaging: An application to predict progression to Alzheimer’s disease. J. Neurosci. Methods 2020, 339, 108701. [Google Scholar] [CrossRef] [PubMed]
- Ghazal, T.M.; Issa, G. Alzheimer disease detection empowered with transfer learning. Comput. Mater. Contin. 2022, 70, 5005–5019. [Google Scholar] [CrossRef]
- Mohi ud din dar, G.; Bhagat, A.; Ansarullah, S.I.; Othman, M.T.B.; Hamid, Y.; Alkahtani, H.K.; Ullah, I.; Hamam, H. A novel framework for classification of different Alzheimer’s disease stages using CNN model. Electronics 2023, 12, 469. [Google Scholar] [CrossRef]
- Islam, J.; Zhang, Y. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform. 2018, 5, 1–14. [Google Scholar] [CrossRef]
- Abd El Hamid, M.M.; Shaheen, M.; Omar, Y.M.; Mabrouk, M.S. Discovering epistasis interactions in Alzheimer’s disease using integrated framework of ensemble learning and multifactor dimensionality reduction (MDR). Ain Shams Eng. J. 2023, 14, 101986. [Google Scholar] [CrossRef]
- Ruiz, J.; Mahmud, M.; Modasshir, M.; Shamim Kaiser, M.; Alzheimer’s Disease Neuroimaging Initiative. 3D DenseNet ensemble in 4-way classification of Alzheimer’s Disease. In Proceedings of the Brain Informatics: 13th International Conference, BI 2020, Padua, Italy, 19 September 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 85–96. [Google Scholar]
- Pan, D.; Zeng, A.; Jia, L.; Huang, Y.; Frizzell, T.; Song, X. Early detection of Alzheimer’s disease using magnetic resonance imaging: A novel approach combining convolutional neural networks and ensemble learning. Front. Neurosci. 2020, 14, 259. [Google Scholar] [CrossRef] [PubMed]
- Razzak, I.; Naz, S.; Ashraf, A.; Khalifa, F.; Bouadjenek, M.R.; Mumtaz, S. Mutliresolutional ensemble PartialNet for Alzheimer detection using magnetic resonance imaging data. Int. J. Intell. Syst. 2022, 37, 6613–6630. [Google Scholar] [CrossRef]
- Li, Y.; Luo, J.; Zhang, J. Classification of Alzheimer’s disease in MRI images using knowledge distillation framework: An investigation. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 1235–1243. [Google Scholar] [CrossRef]
- Hazarika, R.A.; Maji, A.K.; Kandar, D.; Jasinska, E.; Krejci, P.; Leonowicz, Z.; Jasinski, M. An approach for classification of Alzheimer’s disease using deep neural network and brain magnetic resonance imaging (MRI). Electronics 2023, 12, 676. [Google Scholar] [CrossRef]
- Fu’adah, Y.N.; Wijayanto, I.; Pratiwi, N.; Taliningsih, F.; Rizal, S.; Pramudito, M. Automated classification of Alzheimer’s disease based on MRI image processing using convolutional neural network (CNN) with AlexNet architecture. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1844, p. 012020. [Google Scholar]
- Barulina, M.; Okunkov, S.; Ulitin, I.; Sanbaev, A. Sensitivity of Modern Deep Learning Neural Networks to Unbalanced Datasets in Multiclass Classification Problems. Appl. Sci. 2023, 13, 8614. [Google Scholar] [CrossRef]
- Parrales-Bravo, F.; Caicedo-Quiroz, R.; Tolozano-Benitez, E.; Gómez-Rodríguez, V.; Cevallos-Torres, L.; Charco-Aguirre, J.; Vasquez-Cevallos, L. OUCH: Oversampling and Undersampling Cannot Help Improve Accuracy in Our Bayesian Classifiers That Predict Preeclampsia. Mathematics 2024, 12, 3351. [Google Scholar] [CrossRef]
- Anwar, R.S.S. EfficientNet algorithm for classification of different types of cancer. In Proceedings of the Artificial Intelligence and Applications, Crete, Greece, 17–20 June 2022. [Google Scholar]
- Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 10096–10106. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient convolutional neural networks for mobile vision applications (2017). arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1–9. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Bristol, UK, 2010. [Google Scholar]
- Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2013, 29, 17–35. [Google Scholar] [CrossRef]
- Wang, G.G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014. [Google Scholar] [CrossRef]
- Yang, X.S. Cuckoo Search and Firefly Algorithm: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2013; Volume 516. [Google Scholar]
- Valian, E.; Mohanna, S.; Tavakoli, S. Improved cuckoo search algorithm for feedforward neural network training. Int. J. Artif. Intell. Appl. 2011, 2, 36–43. [Google Scholar]
- Yang, X.S. Recent Advances in Swarm Intelligence and Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Yilmaz, A.E.; Demirhan, H. Weighted kappa measures for ordinal multi-class classification performance. Appl. Soft Comput. 2023, 134, 110020. [Google Scholar] [CrossRef]
Deep Learning Model | Accuracy | Loss |
---|---|---|
EfficietNetB0 | ||
ResNet50V2 | ||
ConvNextBase | ||
InceptionResNetV2 | ||
MobilNet | ||
EfficietNetV2B3 |
Class Names | Precision | Recall | F1-Score | ROC AUC | Scott’s Pi | |
---|---|---|---|---|---|---|
EfficientNetB0 | non_demented | 0.9664 | 0.9891 | 0.9776 | 0.9988 | – |
very_mild_demented | 0.9920 | 0.9672 | 0.9794 | 0.9991 | – | |
moderate_demented | 0.9953 | 0.9969 | 0.9961 | 1.0000 | – | |
mild_demented | 1.0000 | 1.0000 | 1.0000 | 1.0000 | – | |
Micro-Average | 0.9851 | 0.9851 | 0.9851 | 0.9995 | 0.97863 | |
ResNet50V2 | non_demented | 0.9816 | 0.9156 | 0.9475 | 0.9963 | – |
very_mild_demented | 0.9291 | 0.9828 | 0.9552 | 0.9966 | – | |
moderate_demented | 0.9892 | 0.9984 | 0.9938 | 0.9999 | – | |
mild_demented | 1.0000 | 1.0000 | 1.0000 | 1.0000 | – | |
Micro-Average | 0.9673 | 0.9673 | 0.9673 | 0.9986 | 0.95300 | |
ConvNextBase | non_demented | 0.7977 | 0.8688 | 0.8317 | 0.9624 | – |
very_mild_demented | 0.9381 | 0.7578 | 0.8384 | 0.9822 | – | |
moderate_demented | 0.8388 | 1.0000 | 0.9123 | 0.9995 | – | |
mild_demented | 1.0000 | 0.4184 | 0.5899 | 1.0000 | – | |
Micro-Average | 0.8533 | 0.8533 | 0.8533 | 0.9775 | 0.78689 | |
InceptionResNetV2 | non_demented | 0.8996 | 0.9656 | 0.9314 | 0.9936 | – |
very_mild_demented | 0.9677 | 0.8891 | 0.9267 | 0.9944 | – | |
moderate_demented | 0.9876 | 0.9953 | 0.9914 | 0.9999 | – | |
mild_demented | 1.0000 | 1.0000 | 1.0000 | 1.0000 | – | |
Micro-Average | 0.9524 | 0.9524 | 0.9524 | 0.997 | 0.931639 | |
MobilNet | non_demented | 0.9279 | 0.8250 | 0.8734 | 0.9714 | – |
very_mild_demented | 0.9277 | 0.8219 | 0.8716 | 0.9829 | – | |
moderate_demented | 0.8384 | 0.9891 | 0.9075 | 0.9928 | – | |
mild_demented | 0.7717 | 1.0000 | 0.8711 | 0.9974 | – | |
Micro-Average | 0.8845 | 0.8845 | 0.8845 | 0.9814 | 0.83499 | |
EfficietNetV2B3 | non_demented | 0.9889 | 0.9750 | 0.9819 | 0.9993 | – |
very_mild_demented | 0.9798 | 0.9844 | 0.9821 | 0.9994 | – | |
moderate_demented | 0.9907 | 1.0000 | 0.9953 | 1.0000 | – | |
mild_demented | 1.0000 | 1.0000 | 1.0000 | 1.0000 | – | |
Micro-Average | 0.9871 | 0.9871 | 0.9871 | 0.9998 | 0.98148 |
Deep Learning Model | InceptionResNetV2 | ResNet50V2 | ConvNeXtBase |
---|---|---|---|
EfficientNetB0 | 0.98860 | 0.98575 | 0.97507 |
InceptionResNetV2 | 0.98718 | 0.94730 | |
ResNet50V2 | 0.96581 |
Ensemble Learning Model | Weight | Scott’s Pi |
---|---|---|
EfficientNetV2B3 + InceptionResNetV2 | (0.8; 0.2) | 0.9829 |
(0.9; 0.1) | 0.9829 | |
(0.7; 0.3) | 0.9864 | |
(0.5; 0.5) | 0.9893 | |
(0.5; 0.4) | 0.9900 | |
(0.4; 0.6) | 0.9672 | |
(0.2; 0.8) | 0.9465 | |
(0.5; 0.45) | 0.9907 | |
(0.6; 0.45) | 0.9893 | |
(0.5; 0.3) | 0.9888 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasmi, K.; Alyami, A.; Hamid, O.; Altaieb, M.O.; Shahin, O.R.; Ben Ammar, L.; Chouaib, H.; Shehab, A. Optimized Hybrid Deep Learning Framework for Early Detection of Alzheimer’s Disease Using Adaptive Weight Selection. Diagnostics 2024, 14, 2779. https://doi.org/10.3390/diagnostics14242779
Gasmi K, Alyami A, Hamid O, Altaieb MO, Shahin OR, Ben Ammar L, Chouaib H, Shehab A. Optimized Hybrid Deep Learning Framework for Early Detection of Alzheimer’s Disease Using Adaptive Weight Selection. Diagnostics. 2024; 14(24):2779. https://doi.org/10.3390/diagnostics14242779
Chicago/Turabian StyleGasmi, Karim, Abdulrahman Alyami, Omer Hamid, Mohamed O. Altaieb, Osama Rezk Shahin, Lassaad Ben Ammar, Hassen Chouaib, and Abdulaziz Shehab. 2024. "Optimized Hybrid Deep Learning Framework for Early Detection of Alzheimer’s Disease Using Adaptive Weight Selection" Diagnostics 14, no. 24: 2779. https://doi.org/10.3390/diagnostics14242779
APA StyleGasmi, K., Alyami, A., Hamid, O., Altaieb, M. O., Shahin, O. R., Ben Ammar, L., Chouaib, H., & Shehab, A. (2024). Optimized Hybrid Deep Learning Framework for Early Detection of Alzheimer’s Disease Using Adaptive Weight Selection. Diagnostics, 14(24), 2779. https://doi.org/10.3390/diagnostics14242779