Toward Robust Lung Cancer Diagnosis: Integrating Multiple CT Datasets, Curriculum Learning, and Explainable AI
Abstract
:1. Introduction
Research Contributions
- A new model that adopts curriculum strategies to analyze training datasets, training on data from the easiest to the most complex, which improves learning efficiency and enables the understanding of harder tasks.
- High-quality and abundant features were obtained using ResNet50 and MobileNetV3 Small with reduced complexity, as they are used solely for feature extraction.
- Data augmentation and model robustness were enhanced using mixup augmentation techniques by randomly merging images with their labels. This allows the model to analyze more images with diverse features, thereby increasing its robustness and generalization ability.
- Bias reduction was achieved by using multiple datasets, and five different databases were used to train the model with diverse demographic samples and varying characteristics, reducing the model’s data dependency and bias, and enhancing its effectiveness.
- Generalizability Assessment: by evaluating the model using a totally external dataset.
- The model’s explainability and trustworthiness are enhanced by using Grad- CAM to identify the most relevant regions in the screening that the model relied on for its decisions, thereby increasing the model’s transparency.
2. Related Work
3. Materials and Methods
3.1. Problem Statement
3.2. Research Objectives
- To explore a new lung cancer CADx.
- To reduce data dependency and bias by using five training datasets.
- To improve the model’s robustness and generalization capability by employing a mixup augmentation technique and curriculum learning strategy.
- To evaluate the model generalizability using an external dataset.
- To enhance trustworthiness and interpretability.
3.3. Datasets and Preprocessing
3.4. The Utilized Techniques and Proposed Methodology
3.4.1. MobileNetV3 Small
3.4.2. Resnet50
3.4.3. Classification Layers
3.4.4. Mixup Methods
3.4.5. Curriculum Learning
3.4.6. Grad-CAM
3.5. The Proposed Methodology
3.6. Pseudocode for Mixup Augmentation and Training Phase Using Curriculum Learning
- Mixup augmentation (Algorithm 1): This method generates an image and labels forged together by combining two images and their respective labels using a random interpolation factor (λ) sampled from a Beta distribution.
- Mixup data generator (Algorithm 2): Augmented data batches are constructed by mixing augmented input sample batches, which creates an infinite variety of fresh augmented datasets in training.
- Training with mixup augmentation (Algorithm 3): In the training phase, curriculum earning was adopted. During each of the five phases, data and labels were processed to create augmented batches. The model was trained for 100 epochs per phase, with callbacks such as learning rate reduction and early stopping. The training procedure was monitored by updating the total number of epochs and providing training history records.
Algorithm 1: The pseudocode of Mixup Augmentation Method (MixupAug) |
(1) procedure MixupAugmentation(image1, image2, label1, label2, alpha) (2) λ ⟵ RandomBeta(alpha, alpha) // generate random lambda parameter (3) MixedImage ⟵ λ * image1 + (1 - λ) * image2 // perform mixup on images (4) MixedLabel ⟵ λ * label1 + (1 - λ) * label2 // perform mixup on labels (5) Result ⟵ Clip(MixedLabel, 0, 1) // clip mixed label values (6) Return(MixedImage, Result) // return mixed image and label end procedure |
Algorithm 2: The pseudocode of Mixup Data Generator (MixupGen) |
(1) procedure MixupDataGen(x_data, y_data, batch_size, alpha) (2) While(True) // start infinite loop for generating batches (3) Shuffle(indices) // shuffle the data indices (4) For(i ϵ Range(0, len(x_data), batch_size)) // iterate over data batches (5) x_batch, y_batch ⟵ CurrentBatch(x_data, y_data, indices, i, batch_size) // get the current batch (6) AugBatch ⟵ ApplyMixupToBatch(x_batch, y_batch, alpha) // apply mixup augmentation (7) Shuffle(AugBatch) // shuffle the augmented batch (8) Return(AugBatch) // return the augmented batch end procedure |
Algorithm 3: Training Model with Mixup Augmentation (TrainMixup) |
(1) procedure TrainMixup(datasets, model, batch_size, epochs, callbacks) (2) For (x_data, y_data, phase_name) ϵ datasets // iterate through datasets (3) TrainGen ⟵ MixupDataGen(x_data, y_data, batch_size, alpha=0.01) // initialize mixup generator (4) Steps ⟵ ComputeSteps(len(x_data)) // compute steps per epoch (5) TrainModel(model, TrainGen, epochs, Steps, callbacks)// train model |
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
- LIDC-IDRI dataset at https://paperswithcode.com/dataset/lidc-idri (accessed on 14 June 2023).
Acknowledgments
Conflicts of Interest
References
- Kadhim, Y.A.; Khan, M.U.; Mishra, A. Deep learning-based computer-aided diagnosis (cad): Applications for medical image datasets. Sensors 2022, 22, 8999. [Google Scholar] [CrossRef] [PubMed]
- Cellina, M.; Cacioppa, L.M.; Cè, M.; Chiarpenello, V.; Costa, M.; Vincenzo, Z.; Pais, D.; Bausano, M.V.; Rossini, N.; Bruno, A.; et al. Artificial intelligence in lung cancer screening: The future is now. Cancers 2023, 15, 4344. [Google Scholar] [CrossRef] [PubMed]
- Dizon, D.S.; Kamal, A.H. Cancer statistics 2024: All hands on deck. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Lin, Y.T.; Lin, L.J.; Chang, Y.H.; Chen, H.Y.; Wang, Y.P.; Shih, J.Y.; Yu, C.J.; Yang, P.C. Stage shift improves lung cancer survival: Real-world evidence. J. Thorac. Oncol. 2023, 18, 47–56. [Google Scholar] [CrossRef]
- Suryani, A.I.; Chang, C.W.; Feng, Y.F.; Lin, T.K.; Lin, C.W.; Cheng, J.C.; Chang, C.Y. Lung tumor localization and visualization in chest X-ray images using deep fusion network and class activation mapping. IEEE Access 2022, 10, 124448–124463. [Google Scholar] [CrossRef]
- Krupinski, E.A.; Kallergi, M. Choosing a radiology workstation: Technical and clinical considerations. Radiology 2007, 242, 671–682. [Google Scholar] [CrossRef]
- Lau, S.C.; Pan, Y.; Velcheti, V.; Wong, K.K. Squamous cell lung cancer: Current landscape and future therapeutic options. Cancer Cell 2022, 40, 1279–1293. [Google Scholar] [CrossRef]
- Nooreldeen, R.; Bach, H. Current and future development in lung cancer diagnosis. Int. J. Mol. Sci. 2021, 22, 8661. [Google Scholar] [CrossRef]
- Wu, S.; Pan, Y.; Mao, Y.; Chen, Y.; He, Y. Current progress and mechanisms of bone metastasis in lung cancer: A narrative review. Transl. Lung Cancer Res. 2021, 10, 439. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Q.; Gong, Y.; Liu, Z.; Chen, S. Identification of prognostic biomarkers for stage iii non-small cell lung carcinoma in female nonsmokers using machine learning. arXiv 2024, arXiv:2408.16068. [Google Scholar]
- Lam, S.; Bai, C.; Baldwin, D.R.; Chen, Y.; Connolly, C.; de Koning, H.; Heuvelmans, M.A.; Hu, P.; Kazerooni, E.A.; Lancaster, H.L.; et al. Current and future perspectives on computed tomography screening for lung cancer: A roadmap from 2023 to 2027 from the International Association for the Study of Lung Cancer. J. Thorac. Oncol. 2024, 19, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Withers, P.J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C.K.; Maire, E.; Manley, M.; Du Plessis, A.; Stock, S.R. X-ray computed tomography. Nat. Rev. Methods Primers 2021, 1, 18. [Google Scholar] [CrossRef]
- Sartorio, C.; Milanese, G.; Ledda, R.E.; Tringali, G.; Balbi, M.; Milone, F.; Sverzellati, N.; Silva, M. Diameter versus volumetry: A narrative review on current recommendations to measure and monitor screening detected lung nodules. Shanghai Chest 2021, 5. [Google Scholar] [CrossRef]
- Sim, A.J.; Kaza, E.; Singer, L.; Rosenberg, S.A. A review of the role of MRI in diagnosis and treatment of early stage lung cancer. Clin. Transl. Radiat. Oncol. 2020, 24, 16–22. [Google Scholar] [CrossRef]
- Yoshida, H.; Dachman, A. CAD techniques, challenges, andcontroversies in computed tomographic colonography. Abdom. Imaging 2004, 30, 26–41. [Google Scholar] [CrossRef]
- El-Baz, A.; Beache, G.M.; Gimel farb, G.; Suzuki, K.; Okada, K.; Elnakib, A.; Soliman, A.; Abdollahi, B. Computer-aided diagnosis systems for lung cancer: Challenges and methodologies. Int. J. Biomed. Imaging 2013, 2013, 942353. [Google Scholar] [CrossRef]
- Bouamrane, A.; Derdour, M.; Alksas, A.; El-Baz, A. Hybrid Deep Learning Approach with Feature Engineering for Enhanced Pulmonary Nodule Diagnosis. SN Comput. Sci. 2024, 5, 890. [Google Scholar] [CrossRef]
- Kanwal, N.; Pérez-Bueno, F.; Schmidt, A.; Engan, K.; Molina, R. The devil is in the details: Whole slide image acquisition and processing for artifacts detection, color variation, and data augmentation: A review. IEEE Access 2022, 10, 58821–58844. [Google Scholar] [CrossRef]
- Kalantar, R.; Lin, G.; Winfield, J.M.; Messiou, C.; Lalondrelle, S.; Blackledge, M.D.; Koh, D.M. Automatic segmentation of pelvic cancers using deep learning: State-of-the-art approaches and challenges. Diagnostics 2021, 11, 1964. [Google Scholar] [CrossRef]
- You, Y.; Bai, Z.; Zhang, Y.; Li, Z. Contour-induced parallel graph reasoning for liver tumor segmentation. Biomed. Signal Process. Control. 2024, 92, 106111. [Google Scholar] [CrossRef]
- Lee, A.L.S.; To, C.C.K.; Lee, A.L.H.; Li, J.J.X.; Chan, R.C.K. Model architecture and tile size selection for convolutional neural network training for non-small cell lung cancer detection on whole slide images. Inform. Med. Unlocked 2022, 28, 100850. [Google Scholar] [CrossRef]
- Bouamrane, A.; Derdour, M. Enhancing lung cancer detection and classification using machine learning and deep learning techniques: A comparative study. In Proceedings of the 2023 International Conference on Networking and Advanced Systems (ICNAS), Algiers, Algeria, 21–23 October 2023; IEEE: New York, NY, USA, 2023; pp. 1–6. [Google Scholar]
- Bouamrane, A.; Derdour, M.; Alksas, A.; El-Baz, A. A Transfer Learning Framework for Lung Cancer Classification Using EfficientV2-L: Generalizability Assessment. In Proceedings of the 2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS), EL OUED, Algeria, 24–25 April 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar]
- Huang, X.; Lei, Q.; Xie, T.; Zhang, Y.; Hu, Z.; Zhou, Q. Deep transfer convolutional neural network and extreme learning machine for lung nodule diagnosis on CT images. Knowl.-Based Syst. 2020, 204, 106230. [Google Scholar] [CrossRef]
- Nishio, M.; Sugiyama, O.; Yakami, M.; Ueno, S.; Kubo, T.; Kuroda, T.; Togashi, K. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS ONE 2018, 13, e0200721. [Google Scholar] [CrossRef]
- Khan, M.A.; Rajinikanth, V.; Satapathy, S.C.; Taniar, D.; Mohanty, J.R.; Tariq, U.; Damaševicius, R. VGG19 network assisted joint segmentation and classification of lung nodules in CT images. Diagnostics 2021, 11, 2208. [Google Scholar] [CrossRef]
- Bilal, A.; Shafiq, M.; Fang, F.; Waqar, M.; Ullah, I.; Ghadi, Y.Y.; Long, H.; Zeng, R. IGWO-IVNet3: DL-based automatic diagnosis of lung nodules using an improved gray wolf optimization and InceptionNet-V3. Sensors 2022, 22, 9603. [Google Scholar] [CrossRef]
- Shafi, I.; Din, S.; Khan, A.; Díez, I.D.L.T.; Casanova, R.d.J.P.; Pifarre, K.T.; Ashraf, I. An effective method for lung cancer diagnosis from ct scan using deep learning-based support vector network. Cancers 2022, 14, 5457. [Google Scholar] [CrossRef]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef]
- Armato, S.G., III; Meyer, C.R.; McNitt-Gray, M.F.; McLennan, G.; Reeves, A.; Croft, B.Y.; Clarke, L.P.; Group, R.R. The Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) project: A resource for the development of change- analysis software. Clin. Pharmacol. Ther. 2008, 84, 448–456. [Google Scholar] [CrossRef]
- Ho, T.K.K.; Gwak, J.; Prakash, O.; Song, J.I.; Park, C.M. Utilizing pretrained deep learning models for automated pulmonary tuberculosis detection using chest radiography. In Proceedings of the Intelligent Information and Database Systems: 11th Asian Conference, ACIIDS 2019, Yogyakarta, Indonesia, 8–11 April 2019; Proceedings, Part II 11. Springer: Berlin/Heidelberg, Germany, 2019; pp. 395–403. [Google Scholar]
- Al-Yasriy, H.F.; Al-Husieny, M.S.; Mohsen, F.Y.; Khalil, E.A.; Hassan, Z.S. Diagnosis of lung cancer based on CT scans using CNN. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Thi-Qar, Iraq, 15–16 July 2020; IOP Publishing: Bristol, UK, 2020; Volume 928, p. 022035. [Google Scholar]
- Setio, A.A.A.; Traverso, A.; De Bel, T.; Berens, M.S.; Van Den Bogaard, C.; Cerello, P.; Chen, H.; Dou, Q.; Fantacci, M.E.; Geurts, B.; et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med. Image Anal. 2017, 42, 1–13. [Google Scholar] [CrossRef]
- Liu, X.; Li, K.W.; Yang, R.; Geng, L.S. Review of deep learning based automatic segmentation for lung cancer radiotherapy. Front. Oncol. 2021, 11, 717039. [Google Scholar] [CrossRef]
- Mastouri, R.; Khlifa, N.; Neji, H.; Hantous-Zannad, S. Deep learning-based CAD schemes for the detection and classification of lung nodules from CT images: A survey. J. X-Ray Sci. Technol. 2020, 28, 591–617. [Google Scholar] [CrossRef] [PubMed]
- Chenyang, L.; Chan, S.C. A joint detection and recognition approach to lung cancer diagnosis from CT images with label uncertainty. IEEE Access 2020, 8, 228905–228921. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, J.; Lin, Z.; Xue, X. BiCFormer: Swin Transformer based model for classification of benign and malignant pulmonary nodules. Meas. Sci. Technol. 2024, 35, 075402. [Google Scholar] [CrossRef]
- Gopinath, A.; Gowthaman, P.; Venkatachalam, M.; Saroja, M. Computer aided model for lung cancer classification using cat optimized convolutional neural networks. Meas. Sens. 2023, 30, 100932. [Google Scholar] [CrossRef]
- Saied, M.; Raafat, M.; Yehia, S.; Khalil, M.M. Efficient pulmonary nodules classification using radiomics and different artificial intelligence strategies. Insights Imaging 2023, 14, 91. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, P.; Xia, K. Application value of the automated machine learning model based on modified CT index combined with serological indices in the early prediction of lung cancer. Front. Public Health 2024, 12, 1368217. [Google Scholar] [CrossRef]
- Lanjewar, M.G.; Panchbhai, K.G.; Charanarur, P. Lung cancer detection from CT scans using modified DenseNet with feature selection methods and ML classifiers. Expert Syst. Appl. 2023, 224, 119961. [Google Scholar] [CrossRef]
- Shen, Z.; Cao, P.; Yang, J.; Zaiane, O.R. WS-LungNet: A two-stage weakly-supervised lung cancer detection and diagnosis network. Comput. Biol. Med. 2023, 154, 106587. [Google Scholar] [CrossRef]
- Wahab Sait, A.R. Lung Cancer Detection Model Using Deep Learning Technique. Appl. Sci. 2023, 13, 12510. [Google Scholar] [CrossRef]
- Raza, R.; Zulfiqar, F.; Khan, M.O.; Arif, M.; Alvi, A.; Iftikhar, M.A.; Alam, T. Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images. Eng. Appl. Artif. Intell. 2023, 126, 106902. [Google Scholar] [CrossRef]
- Porto-Álvarez, J.; Barnes, G.T.; Villanueva, A.; García-Figueiras, R.; Baleato-González, S.; Huelga Zapico, E.; Souto-Bayarri, M. Digital medical x-ray imaging, cad in lung cancer and radiomics in colorectal cancer: Past, present and future. Appl. Sci. 2023, 13, 2218. [Google Scholar] [CrossRef]
- de Margerie-Mellon, C.; Chassagnon, G. Artificial intelligence: A critical review of applications for lung nodule and lung cancer. Diagn. Interv. Imaging 2023, 104, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Najjar, R. Redefining radiology: A review of artificial intelligence integration in medical imaging. Diagnostics 2023, 13, 2760. [Google Scholar] [CrossRef] [PubMed]
- Armato III, S.G.; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A.; et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans. Med. Phys. 2011, 38, 915–931. [Google Scholar] [CrossRef] [PubMed]
- Rathi, D. CT Scan Images for Lung Cancer. 2023. Available online: https://www.kaggle.com/datasets/dishantrathi20/ct-scan-images-for-lung-cancer (accessed on 14 October 2024).
- JAYAPRAKASHPONDY. Lung Cancer Dataset. 2023. Available online: https://www.kaggle.com/datasets/jayaprakashpondy/lung-cancer-dataset (accessed on 14 October 2024).
- Hany, M. Chest CT-Scan images Dataset. 2020. Available online: https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images (accessed on 14 October 2024).
- Dharpure, H. DLCTlUNGDetectNet-Lung Tumor Dataset. 2023. Available online: https://www.kaggle.com/datasets/harshaldharpure/dlctlungdetectnet-lung-tumor-dataset (accessed on 14 October 2024).
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhang, H.; Cisse, M.; Dauphin, Y.; Lopez-Paz, D. mixup: Beyond empirical risk management. In Proceedings of the 6th International Conference Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–13. [Google Scholar]
- Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum learning. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 41–48. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
# | Study | Year | Approach | Dataset | Strengths | Limitation |
---|---|---|---|---|---|---|
01 | Zhao et al. [37] | 2024 | BiCFormer | LIDC-IDRI | Accuracy = 97.4% | Lack of interpretability, homogenous dataset, limited dataset size |
02 | Meng et al. [40] | 2024 | Gradient Boosting Machine | Local hospital datasets | Accuracy = 99%, AUC = 93.1%, External validation: Accuracy = 85.7%, AUC = 95.5% | Homogenous dataset |
03 | Gopinath et al. [38] | 2023 | DFF-CON using DCNN | LIDC-IDRI | Accuracy = 99.89%, F1-score = 99.88, Sensitivity = 99.8%, Specificity = 99.76%, Precision = 99.8% | Limited dataset size, homogeneity, potential for bias, limited reliability |
04 | Saied et al. [39] | 2023 | DenseNet-121 and SVM | LIDC-IDRI | Accuracy = 90.39%, Sensitivity = 90.32%, Specificity = 93.65% | Small, homogenous dataset, potential overfitting, limited generalizability |
05 | Lanjewar et al. [41] | 2023 | SVM, LR, RF, DT, GNB, KNN | Chest-CT Kaggle dataset | Accuracy = 100%, AUC = 99.25%, Kappa = 93% | Limited generalizability, feature dependency, limited interpretability |
06 | Wahab et al. [43] | 2023 | DenseNet-121 and MobileNetV3-Small | Lung-PET-CT-Dx dataset | Accuracy = 98.6%, Precision = 97.9%, Recall = 98.1%, F1-Score = 98, Kappa = 95.8% | Imbalanced dataset, limited interpretability |
07 | Raza et al. [44] | 2023 | EfficientNetB1-based Lung-EffNet | IQ-OTH/NCCD | Accuracy = 99.10%, Precision = 99.22%, Recall = 97.22%, F1score = 98.16% | Very small, homogenous dataset |
08 | Shen et al. [42] | 2023 | WS-LungNet | LIDC-IDRI | CPM = 82.99%, AUC = 88.63%, DROC = 87.12% | Lack of interpretability, small and homogenous dataset |
Proposed Model | Accuracy | Precision | Specificity | Sensitivity | F1-Score | AUC | False Positive | False Negative |
---|---|---|---|---|---|---|---|---|
Internal test dataset | 99.38% | 100% | 100% | 98.76% | 99.37% | 100% | 00% | 1.23% |
External Dataset | 100% | 100% | 100% | 100% | 100% | 100% | 00% | 00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouamrane, A.; Derdour, M.; Bennour, A.; Elfadil Eisa, T.A.; M. Emara, A.-H.; Al-Sarem, M.; Kurdi, N.A. Toward Robust Lung Cancer Diagnosis: Integrating Multiple CT Datasets, Curriculum Learning, and Explainable AI. Diagnostics 2025, 15, 1. https://doi.org/10.3390/diagnostics15010001
Bouamrane A, Derdour M, Bennour A, Elfadil Eisa TA, M. Emara A-H, Al-Sarem M, Kurdi NA. Toward Robust Lung Cancer Diagnosis: Integrating Multiple CT Datasets, Curriculum Learning, and Explainable AI. Diagnostics. 2025; 15(1):1. https://doi.org/10.3390/diagnostics15010001
Chicago/Turabian StyleBouamrane, Amira, Makhlouf Derdour, Akram Bennour, Taiseer Abdalla Elfadil Eisa, Abdel-Hamid M. Emara, Mohammed Al-Sarem, and Neesrin Ali Kurdi. 2025. "Toward Robust Lung Cancer Diagnosis: Integrating Multiple CT Datasets, Curriculum Learning, and Explainable AI" Diagnostics 15, no. 1: 1. https://doi.org/10.3390/diagnostics15010001
APA StyleBouamrane, A., Derdour, M., Bennour, A., Elfadil Eisa, T. A., M. Emara, A. -H., Al-Sarem, M., & Kurdi, N. A. (2025). Toward Robust Lung Cancer Diagnosis: Integrating Multiple CT Datasets, Curriculum Learning, and Explainable AI. Diagnostics, 15(1), 1. https://doi.org/10.3390/diagnostics15010001