From ƒ-Divergence to Quantum Quasi-Entropies and Their Use
Abstract
:1. Introduction
2. f-Divergence and Its Use
- (a)
- is invariant under the permutations of the basic set .
- (b)
- if is a partition of , then and the equality holds if and only if
3. Quantum Quasi-Entropy
4. Fisher Information
4.1. The Cramér-Rao inequality
4.2. Coarse-graining and monotonicity
- (1)
- the monotonicity
- (2)
- is continuous in ρ for every fixed A,
- (3)
- ,
- (4)
- if A is self-adjoint and ,
- (1)
- the monotonicity (33) holds for all completely positive coarse grainings ,
- (2)
- is continuous in ρ for every fixed A,
- (3)
- ,
- (4)
- if A is self-adjoint and ,
4.3. Manifolds of density matrices
4.4. Skew information
5. Von Neumann Algebras
5.1. Generalized covariance
5.2. The Cramér-Rao Inequality
5.3. Uncertainty relation
Acknowledgements
References
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Statistics 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Csiszár, I. Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Magyar. Tud. Akad. Mat. Kutató Int. Közl. 1963, 8, 85–108. [Google Scholar]
- Csiszár, I. A class of measures of informativity of observation channels. Per. Math. Hung. 1972, 2, 191–213. [Google Scholar] [CrossRef]
- Csiszár, I.; Fischer, J. Informationsentfernungen im Raum der Wahrscheinlichkeitsverteilungen. Magyar Tud. Akad. Mat. Kutató Int. Közl. 1962, 7, 159–180. [Google Scholar]
- Österreicher, F.; Vajda, I. A new class of metric divergences on probability spaces and its applicability in statistics. Ann. Inst. Statist. Math. 2003, 55, 639–653. [Google Scholar] [CrossRef]
- Csiszár, I. Information measures: a critical survey. In Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions and the Eighth European Meeting of Statisticians, Prague, Czech Republic, 18 August to 23 August, 1974; Academia: Prague, Czech Republic, 1978; Volume B, pp. 73–86. [Google Scholar]
- Petz, D. Quantum Information Theory and Quantum Statistics; Springer: Berlin, Germany, 2008. [Google Scholar]
- Petz, D. Quasi-entropies for states of a von Neumann algebra. Publ. RIMS. Kyoto Univ. 1985, 21, 781–800. [Google Scholar] [CrossRef]
- Petz, D. Quasi-entropies for finite quantum systems. Rep. Math. Phys. 1986, 23, 57–65. [Google Scholar] [CrossRef]
- Ohya, M.; Petz, D. Quantum Entropy and Its Use, 2nd ed.; Springer-Verlag: Heidelberg, Germany, 1993. [Google Scholar]
- Csiszár, I. Information type measure of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 1967, 2, 299–318. [Google Scholar]
- Liese, F.; Vajda, I. On divergences and informations in statistics and information theory. IEEE Trans. Inform. Theory 2006, 52, 4394–4412. [Google Scholar] [CrossRef]
- Hansen, F.; Pedersen, G.K. Jensen’s inequality for operators and Löwner’s theorem. Math. Ann. 1982, 258, 229–241. [Google Scholar] [CrossRef]
- Lieb, E.H. Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math. 1973, 11, 267–288. [Google Scholar] [CrossRef]
- Hiai, F.; Ohya, M.; Tsukada, M. Sufficiency, KMS condition and relative entropy in von Neumann algebras. Pacific J. Math. 1981, 96, 99–109. [Google Scholar] [CrossRef]
- Petz, D. Covariance and Fisher information in quantum mechanics. J. Phys. A: Math. Gen. 2003, 35, 79–91. [Google Scholar] [CrossRef]
- Hansen, F. Characterizations of symmetric monotone metrics on the the state space of quantum systems. Quantum Inf. Comput. 2006, 6, 597–605. [Google Scholar]
- Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory; North-Holland: Amsterdam, Holland, 1982. [Google Scholar]
- Petz, D. Monotone metrics on matrix spaces. Linear Algebra Appl. 1996, 244, 81–96. [Google Scholar] [CrossRef]
- Petz, D.; Sudár, Cs. Geometries of quantum states. J. Math. Phys. 1996, 37, 2662–2673. [Google Scholar] [CrossRef]
- Hansen, F. Metric adjusted skew information. Proc. Natl. Acad. Sci. USA 2008, 105, 9909–9916. [Google Scholar] [CrossRef] [PubMed]
- Kubo, F.; Ando, T. Means of positive linear operators. Math. Ann. 1980, 246, 205–224. [Google Scholar] [CrossRef]
- Wigner, E.P.; Yanase, M.M. Information content of distributions. Proc. Nat. Acad. Sci. USA 1963, 49, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Fick, E.; Sauermann, G. The Quantum Statistics of Dynamic Processes; Springer: Berlin, Germany, 1990. [Google Scholar]
- Amari, S. Differential-Geometrical Methods in Statistics, Lecture Notes Stat. 28; Springer: Berlin, Germany, 1985. [Google Scholar]
- Amari, S.; Nagaoka, H. Methods of information geometry. Transl. Math. Monographs 2000, 191. [Google Scholar]
- Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994, 72, 3439–3443. [Google Scholar] [CrossRef] [PubMed]
- S. Gallot, S.; Hulin, D.; Lafontaine, J. Riemannian Geometry; Springer: Berlin, Germany, 1993. [Google Scholar]
- Petz, D. Geometry of canonical correlation on the state space of a quantum system. J. Math. Phys. 1994, 35, 780–795. [Google Scholar] [CrossRef]
- Andai, A. Information Geometry in Quantum Mechanics. PhD dissertation, BUTE, Budapest, Hungary, 2004. [Google Scholar]
- Gibilisco, P.; Imparato, D.; Isola, T. Uncertainty principle and quantum Fisher information II. J. Math. Phys. 2007, 48, 072109. [Google Scholar] [CrossRef] [Green Version]
- Petz, D.; Szabó, V E.S. From quasi-entropy to skew information. Int. J. Math. 2009, 20, 1421–1430. [Google Scholar] [CrossRef]
- Gibilisco, P.; Hiai, F.; Petz, D. Quantum covariance, quantum Fisher information and the uncertainty principle. IEEE Trans. Inform. Theory 2009, 55, 439–443. [Google Scholar] [CrossRef]
- Andai, A. Uncertainty principle with quantum Fisher information. J. Math. Phys. 2008, 49, 012106. [Google Scholar] [CrossRef]
- Gibilisco, P.; Imparato, D.; Isola, T. A volume inequality for quantum Fisher information and the uncertainty principle. J. Statist. 2007, 130, 545–559. [Google Scholar] [CrossRef] [Green Version]
- Kosaki, H. Matrix trace inequality related to uncertainty principle. Internat. J. Math. 2005, 16, 629–645. [Google Scholar] [CrossRef]
- Csiszár, I.; Körner, J. Information Theory. Coding Theorems for Discrete Memoryless Systems; Akadémiai Kiadó: Budapest, Hungary, 1981. [Google Scholar]
- Feller, W. An introduction to Probability Theory and Its Applications, vol. II.; John Wiley & Sons: New York, NY, USA, 1966. [Google Scholar]
- Hiai, F.; Petz, D. Riemannian geometry on positive definite matrices related to means. Lin. Alg. Appl. 2009, 430, 3105–3130. [Google Scholar] [CrossRef]
- Kullback, S. Information Theory and Statistics; John Wiley and Sons: New York, NY, USA, 1959. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0/.
Share and Cite
Petz, D. From ƒ-Divergence to Quantum Quasi-Entropies and Their Use. Entropy 2010, 12, 304-325. https://doi.org/10.3390/e12030304
Petz D. From ƒ-Divergence to Quantum Quasi-Entropies and Their Use. Entropy. 2010; 12(3):304-325. https://doi.org/10.3390/e12030304
Chicago/Turabian StylePetz, Dénes. 2010. "From ƒ-Divergence to Quantum Quasi-Entropies and Their Use" Entropy 12, no. 3: 304-325. https://doi.org/10.3390/e12030304