Two Approaches to Obtaining the Space-Time Fractional Advection-Diffusion Equation
Abstract
:1. Introduction
2. Mathematical Preliminaries
3. Fractional Advection-Diffusion Equations
3.1. The First Approach
3.2. The Second Approach
4. Fundamental Solutions to the Cauchy Problems
4.1. The First Approach
4.1.1. Standard Diffusion (, )
4.1.2. Cauchy Diffusion with ,
4.1.3. Subdiffusion with
4.2. The Second Approach
5. Fundamental Solution to the Source Problem
5.1. The First Approach
Subdiffusion with
5.2. The Second Approach
6. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Risken, H. The Fokker-Planck Equation. Methods of Solution and Applications, 2nd ed.; Springer: Berlin, Germany, 1989. [Google Scholar]
- Frank, T.D. Nonlinear Fokker-Planck Equations. Fundamentals and Applications; Springer: Berlin, Germany, 2005. [Google Scholar]
- Van Kampen, N.G. Stochastic Processes in Physics and Chemistry, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1968. [Google Scholar]
- Kaviany, M. Heat Transfer Physics; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Kaviany, M. Principles of Heat Transfer in Porous Media, 2nd ed.; Springer: New York, NY, USA, 1995. [Google Scholar]
- Nield, D.A.; Bejan, A. Convection in Porous Media, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Rushton, K.R. Groundwater Hydrology. Conceptual and Computational Models; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Carmichael, H.J. Statistical Methods in Quantum Optics. Vol. 1 Master Equations and Fokker-Planck Equations; Springer: Berlin, Germany, 1999. [Google Scholar]
- Sokolov, I.M. Thermodynamics and fractional Fokker-Planck equations. Phys. Rev. E 2001, 63, 056111. [Google Scholar] [CrossRef] [PubMed]
- Mehrer, H. Diffusion in Solids. Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer: Berlin, Germany, 2007. [Google Scholar]
- Bejan, A. Convection Heat Transfer, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Bejan, A.; Kraus, A.D. Heat Transfer Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Brenn, G. Analytical Solutions for Transport Processes. Fluid Mechanics, Heat and Mass Transfer; Springer: Berlin, Germany, 2017. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers, Inc.: Redding, CA, USA, 2006. [Google Scholar]
- Povstenko, Y. Fractional heat conduction equation and associated thermal stresses. J. Therm. Stress. 2005, 28, 83–102. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional-Order Systems and Controls. Fundamentals and Applications; Springer: London, UK, 2010. [Google Scholar]
- Datsko, B.; Gafiychuk, V. Complex nonlinear dynamics in subdiffusive activator-inhibitor systems. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1673–1680. [Google Scholar] [CrossRef]
- Baleanu, D.; Tenreiro Machado, J.A.; Luo, A.C.J. (Eds.) Fractional Dynamics and Control; Springer: New York, NY, USA, 2012. [Google Scholar]
- Valério, D.; Sá da Costa, J. An Introduction to Fractional Control; The Institution of Engineering and Technology: London, UK, 2013. [Google Scholar]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers; Springer: Berlin, Germany, 2013. [Google Scholar]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems; World Scientific: New Jersey, NJ, USA, 2013. [Google Scholar]
- Atanacković, T.M.; Pilipović, S.; Stanković, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists, 2nd ed.; World Scientific: Singapore, 2014. [Google Scholar]
- Povstenko, Y. Fractional Thermoelasticity; Springer: New York, NY, USA, 2015. [Google Scholar]
- Compte, A. Continuous time random walks on moving fluids. Phys. Rev. E 1997, 55, 6821–6831. [Google Scholar] [CrossRef]
- Compte, A.; Cáceres, M.O. Fractional dynamics in random velocity fields. Phys. Rev. Lett. 1998, 81, 3140–3143. [Google Scholar] [CrossRef]
- Chaves, A.S. A fractional diffusion equation to describe Lévy flights. Phys. Lett. A 1998, 239, 13–16. [Google Scholar] [CrossRef]
- Jespersen, S.; Metzler, R.; Fogedby, H.S. Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Phys. Rev. E 1999, 59, 2736–2745. [Google Scholar] [CrossRef]
- Yanovsky, V.C.; Chechkin, A.V.; Schertzer, D.; Tur, A.V. Lévy anomalous diffusion and fractional Fokker-Planck equation. Physica A 2000, 282, 13–34. [Google Scholar] [CrossRef]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. Application of a fractional advection-dispersion equation. Water Resour. Res. 2000, 36, 1403–1412. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 2004, 37, R161–R208. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 2004, 172, 65–77. [Google Scholar] [CrossRef]
- Liu, F.; Anh, V.; Turner, I. Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 2004, 166, 209–219. [Google Scholar] [CrossRef]
- Zhang, Y.; Benson, D.A.; Meerschaert, M.M.; Scheffler, H.-P. On using random walks to solve the space-fractional advection-dispersion equations. J. Stat. Phys. 2006, 123, 89–110. [Google Scholar]
- Liu, Q.; Liu, F.; Turner, I.; Anh, V. Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method. J. Comput. Phys. 2007, 222, 57–70. [Google Scholar] [CrossRef]
- Jumarie, G. A Fokker-Planck equation of fractional order with respect to time. J. Math. Phys. 1992, 33, 3536–3542. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J.; Sokolov, I.M. Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended. Phys. Rev. E 1998, 58, 1621–1633. [Google Scholar] [CrossRef]
- Metzler, R.; Barkai, E.; Klafter, J. Anomalous transport in disordered systems under the influence of external fields. Physica A 1999, 266, 343–350. [Google Scholar] [CrossRef]
- Metzler, R.; Barkai, E.; Klafter, J. Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach. Phys. Rev. Lett. 1999, 82, 3563–3567. [Google Scholar] [CrossRef]
- Metzler, R.; Compte, A. Generalized diffusion-advection schemes and dispersive sedimentation: A fractional approach. J. Phys. Chem. B 2000, 104, 3858–3865. [Google Scholar] [CrossRef]
- Barkai, E.; Metzler, R.; Klafter, J. From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 2000, 61, 132–138. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The fractional Fokker-Planck equation: Dispersive transport in an external force field. J. Mol. Liquids 2000, 86, 219–228. [Google Scholar] [CrossRef]
- Barkai, E. Fractional Fokker-Planck equation, solution, and application. Phys. Rev. E 2001, 63, 046118. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Anh, V.; Turner, I.; Zhuang, P. Time-fractional advection-dispersion equation. J. Appl. Math. Comput. 2003, 13, 233–245. [Google Scholar] [CrossRef]
- Huang, F.; Liu, F. The time fractional diffusion equation and the advection-dispersion equation. ANZIAM J. 2005, 46, 317–330. [Google Scholar] [CrossRef]
- Momani, S. An algorithm for solving the fractional convection–diffusion equation with nonlinear source term. Commun. Nonlinear Sci. Numer. Simul. 2007, 12, 1283–1290. [Google Scholar] [CrossRef]
- Momani, S.; Yıldırım, A. Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He’s homotopy perturbation method. Int. J. Comput. Math. 2010, 87, 1057–1065. [Google Scholar] [CrossRef]
- Zheng, G.H.; Wei, T. Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation. J. Comput. Appl. Math. 2010, 233, 2631–2640. [Google Scholar] [CrossRef]
- Karatay, I.; Bayramoglu, S.R. An efficient scheme for time fractional advection dispersion equations. Appl. Math. Sci. 2012, 6, 4869–4878. [Google Scholar]
- Merdan, M. Analytical approximate solutions of fractional convection-diffusion equation with modified Riemann-Liouville derivative by means of fractional variational iteration method. Iran. J. Sci. Technol. 2013, 1, 83–92. [Google Scholar]
- Povstenko, Y. Fundamental solutions to time-fractional advection diffusion equation in a case of two space variables. Math. Probl. Eng. 2014, 705364. [Google Scholar] [CrossRef]
- Povstenko, Y. Theory of diffusive stresses based on the fractional advection-diffusion equation. In Fractional Calculus: Applications; Abi Zeid Daou, R., Xavier, M., Eds.; NOVA Science Publishers: New York, NY, USA, 2015; pp. 227–242. [Google Scholar]
- Povstenko, Y. Generalized boundary conditions for the time-fractional advection diffusion equation. Entropy 2015, 17, 4028–4039. [Google Scholar] [CrossRef]
- Povstenko, Y.; Klekot, J. The Dirichlet problem for the time-fractional advection-diffusion equation in a line segment. Bound. Value Probl. 2016, 2016, 89. [Google Scholar] [CrossRef]
- Zaslavsky, G.M.; Edelman, M.; Niyazov, B.A. Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics. Chaos 1997, 7, 159–181. [Google Scholar] [CrossRef] [PubMed]
- Saichev, A.I.; Zaslavsky, G.M. Fractional kinetic equations: solutions and applications. Chaos 1997, 7, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 2007, 191, 12–20. [Google Scholar] [CrossRef]
- Yıldırım, A.; Koçak, H. Homotopy perturbation method for solving the space-time fractional advection-dispersion equation. Adv. Water Res. 2009, 32, 1711–1716. [Google Scholar] [CrossRef]
- Abdel-Rehim, E.A. Explicit approximation solutions and proof of convergence of space-time fractional advection dispersion equations. Appl. Math. 2013, 4, 1427–1440. [Google Scholar] [CrossRef]
- Metzler, R.; Jeon, J.-H. Anomalous diffusion and fractional transport equations. In Fractional Dynamics. Recent Advances; Klafter, J., Lim, S.-C., Metzler, R., Eds.; World Scientific: Hackensack, NJ, USA, 2012; pp. 3–32. [Google Scholar]
- Povstenko, Y. Space-time-fractional advection diffusion equation in a plane. In Advances in Modelling and Control of Non-Integer Order Systems. Lecture Notes in Electrical Engineering; Latawiec, K.J., Lukaniszyn, M., Stanisławski, R., Eds.; Springer: New York, NY, USA, 2015; Volume 320, pp. 275–284. [Google Scholar]
- Zhang, Y.; Benson, D.A.; Reeves, D.M. Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Adv. Water Res. 2009, 32, 561–581. [Google Scholar] [CrossRef]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical treatment for the fractional Fokker-Planck equation. ANZIAM J. 2007, 48, C759–C774. [Google Scholar] [CrossRef]
- Chen, C.; Liu, F.; Turner, I.; Anh, V. Implicit difference approximation of the Galilei invariant fractional advection diffusion equation. ANZIAM J. 2007, 48, C775–C789. [Google Scholar] [CrossRef]
- Liu, F.; Zhuang, P.; Burrage, K. Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 2012, 64, 2990–3007. [Google Scholar] [CrossRef]
- Shen, S.; Liu, F.; Anh, V. Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algorithms 2011, 56, 383–403. [Google Scholar] [CrossRef]
- Panday, R.K.; Singh, O.P.; Baranwal, V.K. An analytic algorithm for the space-time fractional advection-dispersion equation. Comput. Phys. Commun. 2011, 182, 1134–1144. [Google Scholar] [CrossRef]
- Parvizi, M.; Eslahchi, M.R.; Dehghan, M. Numerical solution of fractional advection-diffusion equation with a nonlinear source term. Numer. Algorithms 2015, 68, 601–629. [Google Scholar]
- Huang, F.; Liu, F. The fundamental solution of the space-time fractional advection-dispersion equation. J. Appl. Math. Comput. 2005, 18, 339–350. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional calculus: Integral and differential equations of fractional order. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: Wien, Austria, 1997; pp. 223–276. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Gorenflo, R.; Mainardi, F.; Moretti, D.; Pagnini, G.; Paradisi, P. Discrete random walk models for space-time fractional diffusion. Chem. Phys. 2002, 284, 521–541. [Google Scholar] [CrossRef]
- Matignion, D. Diffusive representations for fractional Laplacian: System theory framework and numerical issues. Phys. Scr. 2009, 136, 014009. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Pipkin, A.C. A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 1968, 31, 113–126. [Google Scholar] [CrossRef]
- Nigmatullin, R.R. To the theoretical explanation of the “universal response”. Phys. Status Solidi (b) 1984, 123, 739–745. [Google Scholar] [CrossRef]
- Nigmatullin, R.R. On the theory of relaxation with remnant temperature. Phys. Status Solidi (b) 1984, 124, 389–393. [Google Scholar] [CrossRef]
- Mainardi, F.; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 2001, 4, 153–192. [Google Scholar]
- Povstenko, Y. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers; Birkhäuser: New York, NY, USA, 2015. [Google Scholar]
- Gorenflo, R.; Loutchko, J.; Luchko, Y. Computation of the Mittag-Leffler function and its derivatives. Fract. Calc. Appl. Anal. 2002, 5, 491–518. [Google Scholar]
- Matlab File Exchange 2005, Matlab-Code that Calculates the Mittag-Leffler Function with Desired Accuracy. Available online: www.mathworks.com/matlabcentral/fileexchange/8738-Mittag-Leffler-function (accessed on 17 October 2005).
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Povstenko, Y.; Kyrylych, T. Two Approaches to Obtaining the Space-Time Fractional Advection-Diffusion Equation. Entropy 2017, 19, 297. https://doi.org/10.3390/e19070297
Povstenko Y, Kyrylych T. Two Approaches to Obtaining the Space-Time Fractional Advection-Diffusion Equation. Entropy. 2017; 19(7):297. https://doi.org/10.3390/e19070297
Chicago/Turabian StylePovstenko, Yuriy, and Tamara Kyrylych. 2017. "Two Approaches to Obtaining the Space-Time Fractional Advection-Diffusion Equation" Entropy 19, no. 7: 297. https://doi.org/10.3390/e19070297
APA StylePovstenko, Y., & Kyrylych, T. (2017). Two Approaches to Obtaining the Space-Time Fractional Advection-Diffusion Equation. Entropy, 19(7), 297. https://doi.org/10.3390/e19070297