A Fuzzy Comprehensive Evaluation Method Based on AHP and Entropy for a Landslide Susceptibility Map
Abstract
:1. Introduction
- The subjective and objective weights are combined such that the information from the original statistical data is used, and meanwhile, the knowledge of experts and the opinions of decision-makers (DMs) are also reflected.
- The comprehensive weight used in this paper is variable with respect to the changes of the evaluated units. However, in previously-published research, each an evaluation factor was given a single weight for the whole region.
2. Proposed Method
2.1. Building a Fuzzy Matrix
2.2. Determining the Subjective Weight Using AHP
2.3. Determining the Objective Weights Using Entropy
2.4. Calculating the Comprehensive Weight
3. Brief Introduction to the Study Region
4. Results
4.1. Landslide Influencing Data Layers
4.2. Single Factor Sensitivity Analysis
4.3. Membership Degrees of Evaluation Factors
4.4. Comprehensive Weights of Evaluation Factors
4.5. Landslide Susceptibility Assessment Results
5. Discussion
5.1. Evaluation, Comparison and Precision of the LSM Methods
5.2. Validation of Landslide Susceptibility Maps Using the Area under the Curve (AUC) and R-Index Methods
5.3. Comparison to the Previous Studies
5.4. Outlook and Future Work
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, J.; Gurung, D.R.; Liu, R.; Murthy, M.S.R.; Su, F. Abe Barek landslide and landslide susceptibility assessment in Badakhshan Province, Afghanistan. Landslides 2015, 12, 597–609. [Google Scholar] [CrossRef]
- Pourghasemi, H.; Moradi, H.; Aghda, S.F. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat. Hazards 2013, 69, 749–779. [Google Scholar] [CrossRef]
- Günther, A.; Reichenbach, P.; Malet, J.P.; Van Den Eeckhaut, M.; Hervás, J.; Dashwood, C.; Guzzetti, F. Tier-based approaches for landslide susceptibility assessment in Europe. Landslides 2013, 10, 529–546. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, Y.; Zhou, W.; Iqbal, J.; Cui, Z. Debris-Flow Susceptibility Assessment Model and Its Application in Semiarid Mountainous Areas of the Southeastern Tibetan Plateau. Nat. Hazards Rev. 2017, 18, 05016005. [Google Scholar] [CrossRef]
- Dou, J.; Yamagishi, H.; Pourghasemi, H.R.; Yunus, A.P.; Song, X.; Xu, Y.; Zhu, Z. An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat. Hazards 2015, 78, 1749–1776. [Google Scholar] [CrossRef]
- Zare, M.; Pourghasemi, H.R.; Vafakhah, M.; Pradhan, B. Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab. J. Geosci. 2013, 6, 2873–2888. [Google Scholar] [CrossRef] [Green Version]
- Conforti, M.; Pascale, S.; Robustelli, G.; Sdao, F. Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena 2014, 113, 236–250. [Google Scholar] [CrossRef]
- Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides 2012, 9, 93–106. [Google Scholar] [CrossRef]
- Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [Google Scholar] [CrossRef] [Green Version]
- Althuwaynee, O.F.; Pradhan, B.; Park, H.J.; Lee, J.H. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena 2014, 114, 21–36. [Google Scholar] [CrossRef]
- Hong, H.; Pradhan, B.; Xu, C.; Bui, D.T. Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena 2015, 133, 266–281. [Google Scholar] [CrossRef]
- Shahabi, H.; Khezri, S.; Ahmad, B.B.; Hashim, M. Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena 2014, 115, 55–70. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Roodposhti, M.S.; Jankowski, P.; Blaschke, T. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput. Geosci. 2014, 73, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Xu, C. Assessment of earthquake-triggered landslide susceptibility based on expert knowledge and information value methods: A case study of the 20 April 2013 Lushan, China Mw6. 6 earthquake. Disaster Adv. 2013, 6, 119–130. [Google Scholar]
- Pereira, S.; Zêzere, J.; Bateira, C. Assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslides susceptibility models. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22–27 April 2012; Volume 14, p. 1443. [Google Scholar]
- Sharma, L.; Patel, N.; Ghose, M.; Debnath, P. Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India. Nat. Hazards 2015, 75, 1555–1576. [Google Scholar] [CrossRef]
- Hong, H.; Chen, W.; Xu, C.; Youssef, A.M.; Pradhan, B.; Tien Bui, D. Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto Int. 2017, 32, 139–154. [Google Scholar] [CrossRef]
- Liu, C.; Tong, L.; Qi, S. Susceptibility of Rocky Desertification Based on Analytical Hierarchy Process and Certainty Factor (AHP-CF) Method: A Case from Changshun County, Guizhou Province, SW of China; Springer: Cham, Switzerland, 2015; pp. 511–517. [Google Scholar]
- Ilia, I.; Koumantakis, I.; Rozos, D.; Koukis, G.; Tsangaratos, P. A Geographical Information System (GIS) Based Probabilistic Certainty Factor Approach in Assessing Landslide Susceptibility: The Case Study of Kimi, Euboea, Greece; Springer: Cham, Switzerland, 2015; pp. 1199–1204. [Google Scholar]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Spatial prediction of landslide hazards in Hoa Binh Province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 2012, 96, 28–40. [Google Scholar]
- Zhu, A.X.; Wang, R.; Qiao, J.; Qin, C.Z.; Chen, Y.; Liu, J.; Du, F.; Lin, Y.; Zhu, T. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology 2014, 214, 128–138. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Revhaug, I.; Nguyen, D.B.; Pham, H.V.; Bui, Q.N. A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam). Geomat. Nat. Hazards Risk 2015, 6, 243–271. [Google Scholar] [CrossRef]
- Jaafari, A.; Najafi, A.; Pourghasemi, H.; Rezaeian, J.; Sattarian, A. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int. J. Environ. Sci. Technol. 2014, 11, 909–926. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Rezaei, A. Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Sci. Inf. 2015, 8, 171–186. [Google Scholar] [CrossRef]
- Regmi, A.D.; Devkota, K.C.; Yoshida, K.; Pradhan, B.; Pourghasemi, H.R.; Kumamoto, T.; Akgun, A. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab. J. Geosci. 2014, 7, 725–742. [Google Scholar] [CrossRef]
- Xu, J.; Feng, P.; Yang, P. Research of development strategy on China’s rural drinking water supply based on SWOT–TOPSIS method combined with AHP-Entropy: A case in Hebei Province. Environ. Earth Sci. 2016, 75, 58. [Google Scholar] [CrossRef]
- Nagpal, R.; Mehrotra, D.; Bhatia, P.K. Usability evaluation of website using combined weighted method: Fuzzy AHP and entropy approach. Int. J. Syst. Assur. Eng. Manag. 2016, 7, 408–417. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Liu, W.; Qian, Y. A comprehensive decision-making method for wind power integration projects based on improved fuzzy AHP. Energy Procedia 2012, 14, 937–942. [Google Scholar] [CrossRef]
- Fang, F.; Qiao, L.L.; Ni, B.J.; Cao, J.S.; Yu, H.Q. Quantitative evaluation on the characteristics of activated sludge granules and flocs using a fuzzy entropy-based approach. Sci. Rep. 2017, 7, 42910. [Google Scholar] [CrossRef] [PubMed]
- Sabokbar, H.F.; Roodposhti, M.S.; Tazik, E. Landslide susceptibility mapping using geographically weighted principal component analysis. Geomorphology 2014, 226, 15–24. [Google Scholar] [CrossRef]
- Wu, X.; Ren, F.; Niu, R. Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China. Environ. Earth Sci. 2014, 71, 4725–4738. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Mohammady, M.; Pradhan, B. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena 2012, 97, 71–84. [Google Scholar] [CrossRef]
- Shadman Roodposhti, M.; Aryal, J.; Shahabi, H.; Safarrad, T. Fuzzy Shannon Entropy: A Hybrid GIS-Based Landslide Susceptibility Mapping Method. Entropy 2016, 18, 343. [Google Scholar] [CrossRef]
- Najafabadi, R.M.; Ramesht, M.H.; Ghazi, I.; Khajedin, S.J.; Seif, A.; Nohegar, A.; Mahdavi, A. Identification of natural hazards and classification of urban areas by TOPSIS model (case study: Bandar Abbas city, Iran). Geomat. Nat. Hazards Risk 2016, 7, 85–100. [Google Scholar] [CrossRef]
- Wang, X.; Frattini, P.; Crosta, G.; Zhang, L.; Agliardi, F.; Lari, S.; Yang, Z. Uncertainty assessment in quantitative rockfall risk assessment. Landslides 2014, 11, 711–722. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [Google Scholar] [CrossRef]
- Cheng, J.; Tao, J.P. Fuzzy comprehensive evaluation of drought vulnerability based on the analytic hierarchy process: An empirical study from Xiaogan City in Hubei Province. Agric. Agric. Sci. Procedia 2010, 1, 126–135. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making—The Analytic Hierarchy and Network Processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef]
- Shahabi, H.; Hashim, M. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Sci. Rep. 2015, 5, 9899. [Google Scholar] [CrossRef] [PubMed]
- Kannan, M.; Saranathan, E.; Anabalagan, R. Landslide vulnerability mapping using frequency ratio model: A geospatial approach in Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu, India. Arab. J. Geosci. 2013, 6, 2901–2913. [Google Scholar] [CrossRef]
- Li, C.; Ma, T.; Sun, L.; Li, W.; Zheng, A. Application and verification of a fractal approach to landslide susceptibility mapping. Nat. Hazards 2012, 61, 169–185. [Google Scholar] [CrossRef]
Evaluation Factors | Categories | Area (km) | Landslide Count | Comprehensive Influencing Factor | Assignment | Intermediate Value |
---|---|---|---|---|---|---|
Lithology | Hard thick layer carbonate rocks | 1006.15 | 57 | 0.248 | 3 | S1 0.098 |
Hard and dense intrusive rocks | 212.5 | 2 | 0.011 | 1 | S2 0.272 | |
Loose clastic sediments | 55.6 | 19 | 0.036 | 2 | S3 0.445 | |
Relatively hard clastic rocks and shallow metamorphic rocks | 2178.75 | 208 | 0.705 | 4 | S4 0.619 | |
Relief Amplitude | 0–100 m | 1593.5 | 164 | 0.548 | 4 | S1 0.079 |
101–200 m | 1776.25 | 102 | 0.374 | 3 | S2 0.213 | |
201–300 m | 77 | 15 | 0.065 | 2 | S3 0.374 | |
>301 m | 6.25 | 5 | 0.012 | 1 | S4 0.481 | |
Slope () | 0–10 | 116.5 | 21 | 0.004 | 1 | S1 0.059 |
11–20 | 421.5 | 54 | 0.075 | 3 | S2 0.168 | |
21–30 | 998 | 88 | 0.339 | 5 | S3 0.277 | |
31–40 | 1253.75 | 85 | 0.441 | 6 | S4 0.386 | |
41–50 | 583.75 | 37 | 0.129 | 4 | - | |
>50 | 79.5 | 1 | 0.011 | 2 | - | |
Aspect | (Flat) | 1.25 | - | - | - | S1 0.079 |
North | 422.25 | 27 | 0.097 | 3 | S2 0.126 | |
Northeast | 434.5 | 24 | 0.1 | 4 | S3 0.193 | |
East | 447.75 | 36 | 0.127 | 5 | S4 0.250 | |
Southeast | 461.5 | 44 | 0.278 | 8 | - | |
South | 422 | 43 | 0.147 | 7 | - | |
Southwest | 413.25 | 39 | 0.142 | 6 | - | |
West | 404.75 | 38 | 0.059 | 3 | - | |
Northwest | 445.75 | 35 | 0.051 | 1 | - | |
Slope Morphology | Concave Slope | 1200.25 | 95 | 0.141 | 1 | S1 0.162 |
Terrace Slope | 465.5 | 53 | 0.269 | 2 | S2 0.204 | |
Straight Slope | 510.75 | 53 | 0.281 | 3 | S3 0.246 | |
Convex Slope | 1276.5 | 85 | 0.309 | 4 | S4 0.288 | |
Altitude | <500 m | 38.25 | 1 | 0.002 | 1 | S1 0.075 |
500–1000 m | 1223 | 188 | 0.585 | 4 | S2 0.221 | |
1000–1500 m | 1770.5 | 93 | 0.404 | 3 | S3 0.366 | |
1500–2000 m | 421.25 | 4 | 0.009 | 2 | S4 0.512 | |
Annual Mean rainfall | 650–750 mm | 1291 | 120 | 0.485 | 5 | S1 0.083 |
750–850 mm | 562 | 84 | 0.171 | 3 | S2 0.198 | |
850–950 mm | 1064.75 | 63 | 0.271 | 4 | S3 0.313 | |
950–1050 mm | 308.5 | 11 | 0.047 | 2 | S4 0.428 | |
>1050 mm | 226.75 | 8 | 0.026 | 1 | - | |
Distance to river | 0–200 m | 1094 | 127 | 0.391 | 5 | S1 0.069 |
201–400 m | 898.75 | 85 | 0.229 | 4 | S2 0.166 | |
401–600 m | 633.5 | 43 | 0.16 | 2 | S3 0.263 | |
600–1200 m | 650.75 | 30 | 0.218 | 3 | S4 0.360 | |
>1200 m | 176 | 1 | 0.002 | 1 | - |
Evaluation Factors | Source | Resolution/Scale | Description | Classification |
---|---|---|---|---|
Lithology | Geologic Map of Zhen’an County | 1:200,000 | - | Four categories: Hard thick layer carbonate rocks, Hard and dense intrusive rocks, Loose clastic sediments, Relatively hard clastic rocks and Shallow metamorphic rocks |
Relief Amplitude | ASTER-GDEM v2 | 30 m | Calculated from ASTER-GDEM | Four classes: 0–100 m, 101–200 m, 201–300 m, >300 m |
Slope | ASTER-GDEM v2 | 30 m | Calculated from ASTER-GDEM | Six classes: 0–10, 11–20, 21–30, 31–40, 41–50, >50 |
Aspect | ASTER-GDEM v2 | 30 m | Calculated from ASTER-GDEM | Eight categories: north, northeast, east, southeast, south, southwest, west, northwest |
Slope Morphology | ASTER-GDEM v2 | 30 m | Calculated from ASTER-GDEM | Four categories: concave slope, terrace slope, straight slope, convex slope |
Altitude | ASTER-GDEM v2 | 30 m | Calculated from ASTER-GDEM | Four classes: <500 m, 500–1000 m, 1000–1500 m, >1500 m |
Annual Mean Rainfall | China Meteorological Administration | 1:200,000 | Kriging interpolation | Five classes: 650–750 mm, 759–850 mm, 850–950 mm, 950–1050 mm, >1050 mm |
Distance to River | Geologic Map of Zhen’an County | 1:200,000 | Multiple Ring Buffer | Five classes: 0–200 m 201–400 m, 401–600 m, 600–1200 m, >1200 m |
Evaluation Factors | Lithology | Relief Amplitude | Slope | Aspect | Slope Morphology | Altitude | Annual Mean Rainfall | Distance to River |
---|---|---|---|---|---|---|---|---|
Lithology | 1 | |||||||
Relief Amplitude | 1/3 | 1 | ||||||
Slope | 1/2 | 5 | 1 | |||||
Aspect | 1/2 | 3 | 1 | 1 | ||||
Slope Morphology | 1 | 3 | 1/3 | 3 | 1 | |||
Altitude | 1/3 | 1 | 1/3 | 1/3 | 1/3 | 1 | ||
Annual Mean Rainfall | 2 | 3 | 2 | 3 | 2 | 5 | 1 | |
Distance to River | 2 | 3 | 3 | 3 | 3 | 5 | 3 | 1 |
Subjective Weight | 0.1327 | 0.0429 | 0.1307 | 0.0827 | 0.1116 | 0.0378 | 0.1847 | 0.2771 |
Consistency Ratio: 0.06 < 0.1 |
Susceptibility Maps | Susceptibility Classes | Si (km) | Ai (km) | Density of Landslide in Any Class | Landslide Index(Li) in Any Class Percent | Ks (km) | S (km) | p |
---|---|---|---|---|---|---|---|---|
AHP-Fuzzy | Low | 0.22 | 666.25 | 0.01 | 0.04 | 5.896 | 7.439 | 0.79 |
Moderate | 1.33 | 981.75 | 0.05 | 0.17 | ||||
High | 3.98 | 965 | 0.15 | 0.51 | ||||
Very high | 1.91 | 840 | 0.1 | 0.28 | ||||
Entropy-FAHP | Low | 0.7 | 1043 | 0.02 | 0.08 | 6.01 | 7.439 | 0.81 |
Moderate | 0.73 | 725.75 | 0.05 | 0.11 | ||||
High | 2.91 | 828.25 | 0.12 | 0.39 | ||||
Very high | 3.1 | 856 | 0.15 | 0.42 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Yao, L.; Mei, G.; Liu, T.; Ning, Y. A Fuzzy Comprehensive Evaluation Method Based on AHP and Entropy for a Landslide Susceptibility Map. Entropy 2017, 19, 396. https://doi.org/10.3390/e19080396
Zhao H, Yao L, Mei G, Liu T, Ning Y. A Fuzzy Comprehensive Evaluation Method Based on AHP and Entropy for a Landslide Susceptibility Map. Entropy. 2017; 19(8):396. https://doi.org/10.3390/e19080396
Chicago/Turabian StyleZhao, Hongliang, Leihua Yao, Gang Mei, Tianyu Liu, and Yuansong Ning. 2017. "A Fuzzy Comprehensive Evaluation Method Based on AHP and Entropy for a Landslide Susceptibility Map" Entropy 19, no. 8: 396. https://doi.org/10.3390/e19080396
APA StyleZhao, H., Yao, L., Mei, G., Liu, T., & Ning, Y. (2017). A Fuzzy Comprehensive Evaluation Method Based on AHP and Entropy for a Landslide Susceptibility Map. Entropy, 19(8), 396. https://doi.org/10.3390/e19080396