Permutation Entropy-Based Analysis of Temperature Complexity Spatial-Temporal Variation and Its Driving Factors in China
Abstract
:1. Introduction
2. Research Materials
2.1. Air Temperature Data
2.2. Explanatory Variables of Spatial Variation of Temperature Fluctuation Complexity (TFC)
3. Methods
3.1. A Permutation Entropy (PE)-Based Method to Quantify TFC
- Reconstruction of the phase space: For a time series of daily average temperature x(i) (i = 1, 2, …, n), we reconstructed a m-dimensional space and get: X(i) = [x(i), x(i + 1), …, x(i + (m − 1)l)]. m and l are positive integers. l is set to 1. m is crucial for the reconstruction of the phase space.
- Recoding the reconstructed sequences: Rearrange X(i) in ascending order with [x(I + (j1 − 1)l) ≤ x(I + (j2 − 1)l) ≤ … ≤ x(I + (jm − 1)l)]. For each X(i), there is a symbolic sequence (permutation) as A(g) = [j1, j2, …, jm] (g = 1, 2, …, k), where A is a set of symbolic sequences for all X(i). The maximum of possible permutations is m!, k ≤ m!.
- Calculation of PE: The probability of each symbol sequence is recorded as [P1, P2, …, Pk]. Pk is calculated as the number of occurrences of sequence k divided by total number of sequences. The PE of k symbolic sequences of time series x(i) can be defined as: . When Pv = 1/m!, PE(m) reached the maximum ln(m!). Finally PE(m) is normalized by ln(m!) and there is a more elegant form 0 ≤ PE(m) ≤ 1.
3.2. A GeoDetector-Based Method to Detect Driving Factors of TFC Spatial Variation
3.3. Mann-Kendall Method to Investigate TFC Temporal Variation
- Given PE series {PEi} i = 1, 2, …, n, where n is 39 for annual PE series and n is 35 for seasonal PE series, Sk is the number of PEi exceeding PEj (1 ≤ j ≤ i).
- {UF} is calculated to depict the trend from PE1 to PEk. Under the assumption of random and independence of time series, UFk (k = 1, 2, …, n) quickly converges to the standard normal distribution as n increases (n > 10),
- {UB} is calculated to depict the trend from PEk to PEn. Reverse the sequence {PEi} and repeat the step2 to get UF’k.UBk = −UF’k., where UB1 = 0 and k = n, n − 1, …, 1.
4. Results and Analysis
4.1. Spatial Variation of Annual TFC and Its Driving Factors Analysis
4.2. Spatial Variation of Seasonal TFC and Its Driving Factors Analysis
4.3. Temporal Variation of Annual TFC and Seasonal TFC
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, J.; Chou, J. Global analysis theory of climate system and its applications. Sci. Bull. 2003, 48, 1034–1039. [Google Scholar] [CrossRef]
- Adachi, S.A.; Nishizawa, S.; Yoshida, R.; Yamaura, T.; Ando, K.; Yashiro, H.; Kajikawa, Y.; Tomita, H. Contributions of changes in climatology and perturbation and the resulting nonlinearity to regional climate change. Nat. Commun. 2017, 8, 2224. [Google Scholar] [CrossRef] [PubMed]
- Atta-ur-Rahman; Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann-Kendall and Sen’s slope approach. Clim. Dyn. 2017, 48, 783–797. [Google Scholar] [CrossRef]
- Zheng, Z. Characteristics of long-term climate change in Beijing with Detrended Fluctuation Analysis. Chin. J. Geophys. 2007, 50, 1084–1088. [Google Scholar] [CrossRef]
- Kerr, R.A. Climate change. Confronting the bogeyman of the climate system. Science 2005, 310, 432–433. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Alfaro, E.J.; Quesada-Montano, B. Observed (1970–1999) climate variability in Central America using a high-resolution meteorological dataset with implication to climate change studies. Clim. Chang. 2017, 141, 1–16. [Google Scholar] [CrossRef]
- Rolland, C. Spatial and seasonal variations of air temperature lapse rates in Alpine regions. J. Clim. 2003, 16, 1032–1046. [Google Scholar] [CrossRef]
- Cavanaugh, N.R.; Shen, S.S.P. Northern hemisphere climatology and trends of statistical moments documented from GHCN-daily surface air temperature station data from 1950 to 2010. J. Clim. 2014, 27, 5396–5410. [Google Scholar] [CrossRef]
- Anwer, M. Nature of centennial global climate change from observational records. Am. J. Clim. Chang. 2015, 4, 337–354. [Google Scholar] [CrossRef]
- Zunino, L.; Kulp, C.W. Detecting nonlinearity in short and noisy time series using the permutation entropy. Phys. Lett. A 2017, 381, 3627–3635. [Google Scholar] [CrossRef]
- Zhenlin, Y.; Hanna, E.; Callaghan, T.V. Modelling surface-air-temperature variation over complex terrain around Abisko, Swedish Lapland: Uncertainties of measurements and models at different scales. Geogr. Ann. Ser. A Phys. Geogr. 2011, 93, 89–112. [Google Scholar]
- Li, S.C.; Liu, F.Y.; Zhao, Z.Q. Climate complexity and spatial variation in China. Clim. Environ. Res. 2008, 13, 31–38. [Google Scholar]
- Cheng, C.X.; Shi, P.J.; Song, C.Q.; Gao, J.B. Geographic big-data: A new opportunity for geography complexity study. Acta Geogr. Sin. 2018, 73, 1397–1406. [Google Scholar]
- Song, C.Q.; Cheng, C.X.; Shi, P.J. Geography complexity: New connotations of geography in the new era. Acta Geogr. Sin. 2018, 73, 1204–1213. [Google Scholar]
- Zhang, T.; Shen, S.; Cheng, C.X.; Song, C.Q.; Ye, S.J. Long-range correlation analysis of soil temperature and moisture on A’rou Hillsides, Babao River Basin. J. Geophys. Res. Atmos. 2018, 123, 12606–12620. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, H.; Li, Z. A hierarchy-based solution to calculate the configurational entropy of landscape gradients. Landsc. Ecol. 2017. [Google Scholar] [CrossRef]
- Gao, P.; Liu, Z.; Liu, G.; Zhao, H.; Xie, X. Unified metrics for characterizing the fractal nature of geographic features. Ann. Am. Assoc. Geogr. 2017, 107, 1315–1331. [Google Scholar] [CrossRef]
- Li, S.C.; Zhao, Q.F.; Wu, S.H.; Dai, E.F. Measurement of climate complexity using sample entropy. Int. J. Clim. 2006, 26, 2131–2139. [Google Scholar]
- Jiang, L.; Li, N.N.; Fu, Z.T.; Zhang, J.P. Long-range correlation behaviors for the 0-cm average ground surface temperature and average air temperature over China. Appl. Clim. 2015, 119, 25–31. [Google Scholar] [CrossRef]
- Cao, Y.H.; Tung, W.W.; Gao, J.B.; Protopopescu, V.A.; Hively, L.M. Detecting dynamical changes in time series using the permutation entropy. Phys. Rev. E 2004, 70, 046217. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.X.; Zhou, G.W.; Li, D.D.; Zhou, R.C.; Ren, H.H. Application of variational mode decomposition and permutation entropy for rolling bearing fault diagnosis. Int. J. Acoust. Vib. 2019, 24, 303–311. [Google Scholar] [CrossRef]
- Li, X.L.; Cui, S.Y.; Voss, L.J. Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology 2008, 109, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Stosic, T.; Telesca, L.; Ferreira, D.V.D.; Stosic, B. Investigating anthropically induced effects in streamflow dynamics by using permutation entropy and statistical complexity analysis: A case study. J. Hydrol. 2016, 540, 1136–1145. [Google Scholar] [CrossRef]
- Zunino, L.; Zanin, M.; Tabak, B.M.; Perez, D.G.; Rosso, O.A. Forbidden patterns, permutation entropy and stock market inefficiency. Phys. A 2009, 388, 2854–2864. [Google Scholar] [CrossRef]
- Yang, Y.L.; Zhou, M.N.; Niu, Y.; Li, C.G.; Cao, R.; Wang, B.; Yan, P.F.; Ma, Y.; Xiang, J. Epileptic seizure prediction based on permutation entropy. Front. Comput. Neurosci. 2018, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Ouyang, G.X.; Liang, Z.H. Complexity measure of motor current signals for tool flute breakage detection in end milling. Int. J. Mach. Tools Manuf. 2008, 48, 371–379. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Yin, L.F.; Wu, R.J. Investigation of the spatial and temporal distribution of extreme heat in mainland of china with detrended fluctuation and permutation entropy. J. Trop. Meteorol. 2012, 28, 251–257. [Google Scholar]
- Hou, W.; Feng, G.L.; Dong, W.J.; Li, J.P. A technique for distinguishing dynamical species in the temperature time series of north China. Acta Phys. Sin. 2006, 55, 2663–2668. [Google Scholar]
- Hao, C.Y.; Wu, S.H.; Li, S.C. Measurement of climate complexity using permutation entropy. Geogr. Res. 2007, 26, 46–52. [Google Scholar]
- Feddema, J.J. The importance of land-cover change in simulating future climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, X.; Wu, L. Method for mapping rice fields in complex landscape areas based on pre-trained convolutional neural network from HJ-1 A/B data. ISPRS Int. J. Geo-Inf. 2018, 7, 418. [Google Scholar] [CrossRef]
- Ma, J.; Xie, S.P. Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation. J. Clim. 2013, 26, 2482–2501. [Google Scholar] [CrossRef]
- Giorgi, F.; Francisco, R. Uncertainties in regional climate change prediction: A regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Clim. Dyn. 2000, 16, 169–182. [Google Scholar] [CrossRef]
- Tereshchenko, I.E.; Filonov, A.E. Air temperature fluctuations in Guadalajara, Mexico, from 1926 to 1994 in relation to urban growth. Int. J. Clim. 2001, 21, 483–494. [Google Scholar] [CrossRef]
- Vincze, M.; Borcia, I.D.; Harlander, U. Temperature fluctuations in a changing climate: An ensemble-based experimental approach. Sci. Rep. 2017, 7, 254. [Google Scholar] [CrossRef]
- Bai, L.; Jiang, L.; Yang, D.Y.; Liu, Y.B. Quantifying the spatial heterogeneity influences of natural and socioeconomic factors and their interactions on air pollution using the geographical detector method: A case study of the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 232, 692–704. [Google Scholar] [CrossRef]
- Luo, W.; Jasiewicz, J.; Stepinski, T.; Wang, J.F.; Xu, C.D.; Cang, X.Z. Spatial association between dissection density and environmental factors over the entire conterminous United States. Geophys. Res. Lett. 2016, 43, 692–700. [Google Scholar] [CrossRef]
- Shi, S.Q.; Han, Y.; Yu, W.B.; Cao, Y.Q.; Cai, W.M.; Yang, P.; Wu, W.B.; Yu, Q.Y. Spatio-temporal differences and factors influencing intensive cropland use in the Huang-Huai-Hai Plain. J. Geogr. Sci. 2018, 28, 1626–1640. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Hu, Q.; Yang, Y.M.; Qian, W.H. Anomaly based analysis of extreme heat waves in Eastern China during 1981–2013. Int. J. Clim. 2017, 37, 509–523. [Google Scholar] [CrossRef]
- Gao, L.; Schulz, K.; Chen, X.W.; Lin, G.F. Analysis of extreme temperatures in China based on ERA-interim reanalysis data. South North Water Transf. Water Sci. Technol. 2014, 12, 75–78. [Google Scholar]
- Gao, L.; Hao, L. Verification of ERA-Interim reanalysis data over China. J. Subtrop. Resour. Environ. 2014, 9, 75–81. [Google Scholar]
- Song, Z.Y.; Qin, W.H.; Wei, Y.J. Evaluation of surface air temperature in three reanalysis datasets on islands adjacent to Zhejiang. Adv. Mar. Sci. 2018, 36, 499–511. [Google Scholar]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Riedl, M.; Muller, A.; Wessel, N. Practical considerations of permutation entropy—A tutorial review. Eur. Phys. J. Spec. Top. 2013, 222, 249–262. [Google Scholar] [CrossRef]
- Li, X.L.; Ouyang, G.X.; Richards, D.A. Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 2007, 77, 70–74. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Hirsch, R.M.; Slack, J.R. A Nonparametric trend test for seasonal data with serial dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.F.; Cui, B.S.; Sun, T. Temporal trends of hydro-climatic variables and runoff response to climatic variability and vegetation changes in the Yiluo River basin, China. Hydrol. Process. 2010, 23, 3030–3039. [Google Scholar] [CrossRef]
- Xu, Z.X.; Gong, T.L.; Li, J.Y. Decadal trend of climate in the Tibetan Plateau-regional temperature and precipitation. Hydrol. Process. 2008, 22, 3056–3065. [Google Scholar] [CrossRef]
- Deniz, A.; Toros, H.; Incecik, S. Spatial variations of climate indices in Turkey. Int. J. Clim. 2015, 31, 394–403. [Google Scholar] [CrossRef]
- Kapala, A.; Machel, H.; Flohn, H. Behaviour of the centres of action above the Atlantic since 1881. Part II: Associations with regional climate anomalies. Int. J. Clim. 2015, 18, 23–36. [Google Scholar] [CrossRef]
- Bujalsky, L.; Jirka, V.; Zemek, F.; Frouz, J. Relationships between the normalised difference vegetation index and temperature fluctuations in post-mining sites. Int. J. Min. Reclam. Environ. 2018, 32, 254–263. [Google Scholar] [CrossRef]
- He, J.L.; Zhao, W.; Li, A.N.; Wen, F.P.; Yu, D.J. The impact of the terrain effect on land surface temperature variation based on Landsat-8 observations in mountainous areas. Int. J. Remote Sens. 2019, 40, 1808–1827. [Google Scholar] [CrossRef]
- Alo, C.A.; Wang, G. Role of dynamic vegetation in regional climate predictions over western Africa. Clim. Dyn. 2010, 35, 907–922. [Google Scholar] [CrossRef]
- Wu, L.Y.; Zuo, H.C.; Feng, J.M.; Chen, B.L.; Dong, L.X. Numerical simulation of the impact of land use and green vegetation fraction changes on regional climate in China. J. Lanzhou Univ. Nat. Sci. 2018, 54, 54–64. [Google Scholar]
- Zhao, L.; Yang, Q.; An, S.Z. Numerical simulation analysis on the impact of change in rangeland vegetation type on climate in the Tianshan Mountains using a Regional Climate Model. Acta Pratacult. Sin. 2014, 23, 51–61. [Google Scholar]
- Wang, H. Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850 to 2009. Int. J. Clim. 2015, 35, 913–922. [Google Scholar] [CrossRef]
- Glover, J.; Mcculloch, J. The empirical relation between solar radiation and hours of bright sunshine in the high-altitude tropics. Q. J. R. Meteorol. Soc. 1958, 84, 172–175. [Google Scholar] [CrossRef]
- Haslinger, K.; Anders, I.; Hofstatter, M. Regional climate modelling over complex terrain: An evaluation study of COSMO-CLM hindcast model runs for the Greater Alpine Region. Clim. Dyn. 2013, 40, 511–529. [Google Scholar] [CrossRef]
- Zhu, J.W.; Zeng, X.D. Influences of the seasonal growth of vegetation on surface energy budgets over middle to high latitudes. Int. J. Clim. 2017, 37, 4251–4260. [Google Scholar] [CrossRef]
- Qiao, D.; Wang, N. Relationship between winter snow cover dynamics, climate and spring grassland vegetation phenology in inner Mongolia, China. ISPRS Int. J. Geo-Inf. 2019, 8, 42. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Z.Y.; Zhou, A.G. Alpine cold vegetation response to climate change in the western Nyainqentanglha range in 1972–2009. Sci. World J. 2014, 2014, 514736. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Qian, Y. A coupled regional air-sea model, its performance and climate drift in simulation of the East Asian summer monsoon in 1998. Int. J. Clim. 2005, 25, 679–692. [Google Scholar] [CrossRef]
- Qian, Y.F.; Zheng, Y.Q.; Zhang, Y.; Miao, M.Q. Responses of China’s summer monsoon climate to snow anomaly over the Tibetan Plateau. Int. J. Clim. 2003, 23, 593–613. [Google Scholar] [CrossRef]
- Oxoli, D.; Ronchetti, G.; Minghini, M.; Molinari, M.E.; Lotfian, M.; Sona, G.; Brovelli, M.A. Measuring urban land cover influence on air temperature through multiple geo-data-the case of Milan, Italy. ISPRS Int. J. Geo-Inf. 2018, 7, 421. [Google Scholar] [CrossRef]
- Wang, T.; Sun, J.G.; Han, H.; Yan, C.Z. The relative role of climate change and human activities in the desertification process in Yulin region of northwest China. Environ. Monit. Assess. 2012, 184, 7165–7173. [Google Scholar] [CrossRef]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.; Pappenberger, F.; et al. ERA-Interim/Land: A global land surface reanalysis data set. HESS 2015, 19, 389–407. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Cheng, C.; Gao, P. Permutation Entropy-Based Analysis of Temperature Complexity Spatial-Temporal Variation and Its Driving Factors in China. Entropy 2019, 21, 1001. https://doi.org/10.3390/e21101001
Zhang T, Cheng C, Gao P. Permutation Entropy-Based Analysis of Temperature Complexity Spatial-Temporal Variation and Its Driving Factors in China. Entropy. 2019; 21(10):1001. https://doi.org/10.3390/e21101001
Chicago/Turabian StyleZhang, Ting, Changxiu Cheng, and Peichao Gao. 2019. "Permutation Entropy-Based Analysis of Temperature Complexity Spatial-Temporal Variation and Its Driving Factors in China" Entropy 21, no. 10: 1001. https://doi.org/10.3390/e21101001
APA StyleZhang, T., Cheng, C., & Gao, P. (2019). Permutation Entropy-Based Analysis of Temperature Complexity Spatial-Temporal Variation and Its Driving Factors in China. Entropy, 21(10), 1001. https://doi.org/10.3390/e21101001