Rhythm Analysis during Cardiopulmonary Resuscitation Using Convolutional Neural Networks
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. CPR Artifact Suppressing Filter
Algorithm Based on CNNs
3.2. Shock/No-Shock Decision Algorithms
Classical Machine Learning Shock/no-Shock Decision Algorithm for Baseline Comparison
3.3. Evaluation
4. Results
4.1. Parameters of the CNN Architecture
4.2. Comparison with the Baseline Machine Learning Model
4.3. Effect of the ECG Corruption Level on Classification
4.4. Feature Extraction Using CNNs
4.5. Mixed Architectures
4.6. Analysis of Classification Errors
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CPR | cardiopulmonary resuscitation |
CNN | convolutional neural network |
RLS | recursive least squares |
OHCA | out of hospital cardiac arrest |
ECG | electrocardiogram |
VF | ventricular fibrillation |
VT | ventricular tachycardia |
ORG | organized |
AS | asystole |
AHA | American Heart Association |
CD | compression depth |
TI | thoracic impedance |
LMS | least mean squares |
SVM | support vector machine |
RF | random forest |
SWT | stationary wavelet transform |
TP | true positive |
TN | true negative |
FP | false positive |
FN | false negative |
Se | sensitivity |
Sp | specificity |
Acc | accuracy |
BAC | balanced accuracy |
PPV | positive predictive value |
NPV | negative predictive value |
SNR | signal-to-noise ratio |
t-SNE | t-distributed stochastic neighbour embedding |
DBi | Davies-Bouldin index |
AUC | area under the receiver characteristics curve |
ROC | Resuscitaion Outcome Consortium |
References
- Berdowski, J.; Berg, R.A.; Tijssen, J.G.; Koster, R.W. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation 2010, 81, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Daya, M.R.; Schmicker, R.H.; Zive, D.M.; Rea, T.D.; Nichol, G.; Buick, J.E.; Brooks, S.; Christenson, J.; MacPhee, R.; Craig, A.; et al. Out-of-hospital cardiac arrest survival improving over time: Results from the Resuscitation Outcomes Consortium (ROC). Resuscitation 2015, 91, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, G.; Handley, A.; Koster, R.; Castrén, M.; Smyth, M.; Olasveengen, T.; Monsieurs, K.; Raffay, V.; Gärsner, J.; Wenzel, V.; et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 2. Adult basic life support and automated external defibrillation. Resuscitation 2015, 95, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Takata, T.S.; Page, R.L.; Joglar, J.A. Automated external defibrillators: Technical considerations and clinical promise. Ann. Intern. Med. 2001, 135, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Kerber, R.E.; Becker, L.B.; Bourland, J.D.; Cummins, R.O.; Hallstrom, A.P.; Michos, M.B.; Nichol, G.; Ornato, J.P.; Thies, W.H.; White, R.D.; et al. Automatic external defibrillators for public access defibrillation: Recommendations for specifying and reporting arrhythmia analysis algorithm performance, incorporating new waveforms, and enhancing safety: A statement for health professionals from the American Heart Association Task Force on Automatic External Defibrillation, Subcommittee on AED Safety and Efficacy. Circulation 1997, 95, 1677–1682. [Google Scholar]
- Snyder, D.; Morgan, C. Wide variation in cardiopulmonary resuscitation interruption intervals among commercially available automated external defibrillators may affect survival despite high defibrillation efficacy. Crit. Care Med. 2004, 32, S421–S424. [Google Scholar] [CrossRef]
- Van Alem, A.P.; Sanou, B.T.; Koster, R.W. Interruption of cardiopulmonary resuscitation with the use of the automated external defibrillator in out-of-hospital cardiac arrest. Ann. Emerg. Med. 2003, 42, 449–457. [Google Scholar] [CrossRef]
- Li, Y.; Tang, W. Techniques for artefact filtering from chest compression corrupted ECG signals: Good, but not enough. Resuscitation 2009, 80, 1219–1220. [Google Scholar] [CrossRef]
- Sato, Y.; Weil, M.H.; Sun, S.; Tang, W.; Xie, J.; Noc, M.; Bisera, J. Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation. Crit. Care Med. 1997, 25, 733–736. [Google Scholar] [CrossRef]
- Eftestøl, T.; Sunde, K.; Steen, P.A. Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Circulation 2002, 105, 2270–2273. [Google Scholar] [CrossRef] [Green Version]
- Edelson, D.P.; Abella, B.S.; Kramer-Johansen, J.; Wik, L.; Myklebust, H.; Barry, A.M.; Merchant, R.M.; Hoek, T.L.V.; Steen, P.A.; Becker, L.B. Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation 2006, 71, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Gauna, S.; Irusta, U.; Ruiz, J.; Ayala, U.; Aramendi, E.; Eftestøl, T. Rhythm analysis during cardiopulmonary resuscitation: Past, present, and future. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Werther, T.; Klotz, A.; Granegger, M.; Baubin, M.; Feichtinger, H.G.; Amann, A.; Gilly, H. Strong corruption of electrocardiograms caused by cardiopulmonary resuscitation reduces efficiency of two-channel methods for removing motion artefacts in non-shockable rhythms. Resuscitation 2009, 80, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Irusta, U.; Ruiz, J. An algorithm to discriminate supraventricular from ventricular tachycardia in automated external defibrillators valid for adult and paediatric patients. Resuscitation 2009, 80, 1229–1233. [Google Scholar] [CrossRef] [PubMed]
- Ayala, U.; Eftestøl, T.; Alonso, E.; Irusta, U.; Aramendi, E.; Wali, S.; Kramer-Johansen, J. Automatic detection of chest compressions for the assessment of CPR-quality parameters. Resuscitation 2014, 85, 957–963. [Google Scholar] [CrossRef]
- Aase, S.O.; Eftestol, T.; Husoy, J.; Sunde, K.; Steen, P.A. CPR artifact removal from human ECG using optimal multichannel filtering. IEEE Trans. Biomed. Eng. 2000, 47, 1440–1449. [Google Scholar] [CrossRef]
- Eilevstjønn, J.; Eftestøl, T.; Aase, S.O.; Myklebust, H.; Husøy, J.H.; Steen, P.A. Feasibility of shock advice analysis during CPR through removal of CPR artefacts from the human ECG. Resuscitation 2004, 61, 131–141. [Google Scholar] [CrossRef]
- Berger, R.D.; Palazzolo, J.; Halperin, H. Rhythm discrimination during uninterrupted CPR using motion artifact reduction system. Resuscitation 2007, 75, 145–152. [Google Scholar] [CrossRef]
- Irusta, U.; Ruiz, J.; de Gauna, S.R.; EftestØl, T.; Kramer-Johansen, J. A least mean-square filter for the estimation of the cardiopulmonary resuscitation artifact based on the frequency of the compressions. IEEE Trans. Biomed. Eng. 2009, 56, 1052–1062. [Google Scholar] [CrossRef]
- Rheinberger, K.; Steinberger, T.; Unterkofler, K.; Baubin, M.; Klotz, A.; Amann, A. Removal of CPR artifacts from the ventricular fibrillation ECG by adaptive regression on lagged reference signals. IEEE Trans. Biomed. Eng. 2007, 55, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.; Irusta, U.; de Gauna, S.R.; Eftestøl, T. Cardiopulmonary resuscitation artefact suppression using a Kalman filter and the frequency of chest compressions as the reference signal. Resuscitation 2010, 81, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Ayala, U.; Irusta, U.; Ruiz, J.; Eftestøl, T.; Kramer-Johansen, J.; Alonso-Atienza, F.; Alonso, E.; González-Otero, D. A reliable method for rhythm analysis during cardiopulmonary resuscitation. BioMed Res. Int. 2014, 2014, 872470. [Google Scholar] [CrossRef] [PubMed]
- Figuera, C.; Irusta, U.; Morgado, E.; Aramendi, E.; Ayala, U.; Wik, L.; Kramer-Johansen, J.; Eftestøl, T.; Alonso-Atienza, F. Machine learning techniques for the detection of shockable rhythms in automated external defibrillators. PLOS ONE 2016, 11, e0159654. [Google Scholar] [CrossRef] [PubMed]
- Rad, A.B.; Eftestøl, T.; Engan, K.; Irusta, U.; Kvaløy, J.T.; Kramer-Johansen, J.; Wik, L.; Katsaggelos, A.K. ECG-based classification of resuscitation cardiac rhythms for retrospective data analysis. IEEE Trans. Biomed. Eng. 2017, 64, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- Isasi, I.; Irusta, U.; Rad, A.B.; Aramendi, E.; Zabihi, M.; Eftestøl, T.; Kramer-Johansen, J.; Wik, L. Automatic Cardiac Rhythm Classification With Concurrent Manual Chest Compressions. IEEE Access 2019, 7, 115147–115159. [Google Scholar] [CrossRef]
- Isasi, I.; Irusta, U.; Elola, A.; Aramendi, E.; Ayala, U.; Alonso, E.; Kramer-Johansen, J.; Eftestøl, T. A machine learning shock decision algorithm for use during piston-driven chest compressions. IEEE Trans. Biomed. Eng. 2018, 66, 1752–1760. [Google Scholar] [CrossRef]
- Rim, B.; Sung, N.J.; Min, S.; Hong, M. Deep Learning in Physiological Signal Data: A Survey. Sensors 2020, 20, 969. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Zhou, Y.; Shang, J.; Xiao, C.; Sun, J. Opportunities and Challenges in Deep Learning Methods on Electrocardiogram Data: A Systematic Review. arXiv 2019, arXiv:2001.01550. [Google Scholar]
- Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 2015, 63, 664–675. [Google Scholar] [CrossRef]
- Acharya, U.R.; Fujita, H.; Lih, O.S.; Hagiwara, Y.; Tan, J.H.; Adam, M. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf. Sci. 2017, 405, 81–90. [Google Scholar] [CrossRef]
- Al Rahhal, M.M.; Bazi, Y.; Al Zuair, M.; Othman, E.; BenJdira, B. Convolutional neural networks for electrocardiogram classification. J. Med. Biol. Eng. 2018, 38, 1014–1025. [Google Scholar]
- Xia, Y.; Wulan, N.; Wang, K.; Zhang, H. Detecting atrial fibrillation by deep convolutional neural networks. Comput. Biol. Med. 2018, 93, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65. [Google Scholar] [CrossRef] [PubMed]
- Pourbabaee, B.; Roshtkhari, M.J.; Khorasani, K. Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Trans. Syst. Man. Cybern. Syst. 2018, 48, 2095–2104. [Google Scholar] [CrossRef]
- Andreotti, F.; Carr, O.; Pimentel, M.A.; Mahdi, A.; De Vos, M. Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; pp. 1–4. [Google Scholar]
- Picon, A.; Irusta, U.; Álvarez-Gila, A.; Aramendi, E.; Alonso-Atienza, F.; Figuera, C.; Ayala, U.; Garrote, E.; Wik, L.; Kramer-Johansen, J.; et al. Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia. PLoS ONE 2019, 14, e0216756. [Google Scholar] [CrossRef]
- Elola, A.; Aramendi, E.; Irusta, U.; Picón, A.; Alonso, E.; Owens, P.; Idris, A. Deep neural networks for ECG-based pulse detection during out-of-hospital cardiac arrest. Entropy 2019, 21, 305. [Google Scholar] [CrossRef] [Green Version]
- Wik, L.; Kramer-Johansen, J.; Myklebust, H.; Sørebø, H.; Svensson, L.; Fellows, B.; Steen, P.A. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 2005, 293, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Isasi, I.; Irusta, U.; Aramendi, E.; Ayala, U.; Alonso, E.; Kramer-Johansen, J.; Eftestøl, T. A multistage algorithm for ECG rhythm analysis during piston-driven mechanical chest compressions. IEEE Trans. Biomed. Eng. 2018, 66, 263–272. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, L.; Ward, R.K. Fast RLS Fourier analyzers capable of accommodating frequency mismatch. Signal Process. 2007, 87, 2197–2212. [Google Scholar] [CrossRef]
- Atkins, D.L.; Scott, W.A.; Blaufox, A.D.; Law, I.H.; Dick II, M.; Geheb, F.; Sobh, J.; Brewer, J.E. Sensitivity and specificity of an automated external defibrillator algorithm designed for pediatric patients. Resuscitation 2008, 76, 168–174. [Google Scholar]
- Kwok, H.; Coult, J.; Drton, M.; Rea, T.D.; Sherman, L. Adaptive rhythm sequencing: A method for dynamic rhythm classification during CPR. Resuscitation 2015, 91, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings of the International conference on machine learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1139–1147. [Google Scholar]
- Kuo, S. Computer detection of ventricular fibrillation. Proc. Comput. Cardiol. IEEE Comupt. Soc. 1978, 347–349. [Google Scholar]
- Gonzalez, L.; Walker, K.; Challa, S.; Bent, B. Monitoring a skipped heartbeat: A real-time premature ventricular contraction (pvc) monitor. In Proceedings of the 2016 IEEE Virtual Conference on Applications of Commercial Sensors (VCACS), Raleigh, NC, USA, 15 June 2016–15 January 2017; pp. 1–7. [Google Scholar]
- Langhelle, A.; Eftestøl, T.; Myklebust, H.; Eriksen, M.; Holten, B.T.; Steen, P.A. Reducing CPR artefacts in ventricular fibrillation in vitro. Resuscitation 2001, 48, 279–291. [Google Scholar] [CrossRef]
- Fitzgibbon, E.; Berger, R.; Tsitlik, J.; Halperin, H.R. Determination of the noise source in the electrocardiogram during cardiopulmonary resuscitation. Crit. Care Med. 2002, 30, S148–S153. [Google Scholar]
- Maaten, L.v.d.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Davies, D. DW 1979. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar]
- Vesanto, J.; Himberg, J.; Alhoniemi, E.; Parhankangas, J. SOM toolbox for Matlab 5. Hels. Univ. Technol. 2000, 216, 57. [Google Scholar]
- Rad, A.B.; Eftestøl, T.; Irusta, U.; Kvaløy, J.T.; Wik, L.; Kramer-Johansen, J.; Katsaggelos, A.K.; Engan, K. An automatic system for the comprehensive retrospective analysis of cardiac rhythms in resuscitation episodes. Resuscitation 2018, 122, 6–12. [Google Scholar]
- Isasi Liñero, I.; López de Larruzea, L.; Irusta Zarandona, U.; Aramendi Ecenarro, E. Diagnóstico del ritmo cardíaco durante la resucitación cardiopulmonar mediante técnicas de aprendizaje profundo. Actas del XXXVII Congreso Anual de la Sociedad Española de Ingeniería Biomédica 2019, 37, 37–40. [Google Scholar]
Metric | 3 | 9 | |||
---|---|---|---|---|---|
CNN | Baseline | CNN | Baseline | ||
Se | 93.2 (92.2–94.0) | 93.1 (92.6–93.6) | 95.8 (94.6–96.8) | 95.2 (94.7–95.7) | |
Sp | 94.5 (94.1–94.9) | 94.1 (93.9–94.3) | 96.1 (95.8–96.5) | 95.6 (95.2–95.9) | |
AS | 93.1 (92.6–93.7) | 92.5 (92.2–92.8) | 95.4 (94.9–96.0) | 94.5 (94.1–95.0) | |
ORG | 95.6 (95.1–96.0) | 95.3 (95.1–95.6) | 96.8 (96.2–97.4) | 96.4 (96.0–96.8) | |
BAC | 93.8 (93.4–94.3) | 93.6 (93.3–93.9) | 96.0 (95.5–96.5) | 95.4 (95.0–95.7) | |
Acc | 94.3 (94.0–94.6) | 93.9 (93.7–94.1) | 96.1 (95.7–96.4) | 95.5 (95.2–95.8) | |
PPV | 78.5 (77.2–79.6) | 77.2 (76.5–77.7) | 84.3 (82.8–85.6) | 82.2 (81.0–83.2) | |
NPV | 98.5 (98.3–98.7) | 98.5 (98.3–98.6) | 99.1 (98.8–99.3) | 98.9 (98.8–99.1) |
CNN Features | Handcrafted Features | |||
---|---|---|---|---|
Feature | AUC | Feature | AUC | |
97.2 (1.1) | SampEn() | 90.6 (2.0) | ||
96.4 (1.6) | 90.3 (1.7) | |||
95.2 (2.6) | 87.7 (1.8) | |||
94.8 (2.3) | 86.2 (2.3) | |||
90.7 (3.7) | VFLeak | 85.9 (2.7) | ||
81.2 (11.1) | SampEn() | 84.8 (2.4) | ||
75.2 (10.6) | 84.6 (2.8) | |||
73.9 (8.6) | x4 | 82.5 (3.6) | ||
66.9 (6.2) | 82.4 (2.0) | |||
59.3 (17.1) | SampEn() | 80.6 (2.7) |
Metric | CNN | Mixed Classification Solutions | ||
---|---|---|---|---|
All-Features | Stacked | |||
Se | 95.8 (94.6–96.8) | 95.3 (93.9–96.2) | 95.6 (94.6–96.4) | 96.1 (95.1–96.8) |
Sp | 96.1 (95.8–96.5) | 96.7 (96.3–97.1) | 96.8 (96.5–97.1) | 96.7 (96.3–97.1) |
AS | 95.4 (94.9–96.0) | 95.9 (95.4–96.5) | 96.1 (95.6–96.6) | 95.9 (95.3–96.4) |
ORG | 96.8 (96.2–97.4) | 97.2 (96.7–97.7) | 97.3 (96.9–97.7) | 97.4 (96.9–97.9) |
BAC | 96.0 (95.5–96.5) | 96.0 (95.3–96.5) | 96.2 (95.7–96.7) | 96.4 (95.9–96.8) |
Acc | 96.1 (95.7–96.4) | 96.4 (96.0–96.7) | 96.6 (96.3–96.9) | 96.6 (96.3–96.9) |
PPV | 84.3 (82.8–85.6) | 86.0 (84.6–87.4) | 86.5 (85.3–87.8) | 86.3 (84.8–87.5) |
NPV | 99.1 (98.8–99.3) | 99.0 (98.7–99.2) | 99.0 (98.8–99.2) | 99.1 (98.9–99.3) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isasi, I.; Irusta, U.; Aramendi, E.; Eftestøl, T.; Kramer-Johansen, J.; Wik, L. Rhythm Analysis during Cardiopulmonary Resuscitation Using Convolutional Neural Networks. Entropy 2020, 22, 595. https://doi.org/10.3390/e22060595
Isasi I, Irusta U, Aramendi E, Eftestøl T, Kramer-Johansen J, Wik L. Rhythm Analysis during Cardiopulmonary Resuscitation Using Convolutional Neural Networks. Entropy. 2020; 22(6):595. https://doi.org/10.3390/e22060595
Chicago/Turabian StyleIsasi, Iraia, Unai Irusta, Elisabete Aramendi, Trygve Eftestøl, Jo Kramer-Johansen, and Lars Wik. 2020. "Rhythm Analysis during Cardiopulmonary Resuscitation Using Convolutional Neural Networks" Entropy 22, no. 6: 595. https://doi.org/10.3390/e22060595
APA StyleIsasi, I., Irusta, U., Aramendi, E., Eftestøl, T., Kramer-Johansen, J., & Wik, L. (2020). Rhythm Analysis during Cardiopulmonary Resuscitation Using Convolutional Neural Networks. Entropy, 22(6), 595. https://doi.org/10.3390/e22060595