Modeling of Eddy Current Welding of Rail: Three-Dimensional Simulation
Abstract
:1. Introduction
2. Three-Dimensional Rail Welding Model
2.1. Establish the Three-Dimensional Rail Welding Model
2.2. Three-Dimensional Rail Welding Model Numerical Calculation
2.2.1. Calculation of Three-Dimensional Electric Field Strength
2.2.2. Calculation of Magnetic Induction in Three-Dimensional Model
3. Three-Dimensional Meshing Mathematical Model
3.1. Basic Cell Grid
3.2. Three-Dimensional Eddy Current Finite Element Model
3.3. Three-Dimensional Finite Element Meshing
4. Three-Dimensional Model Simulation Process of Rail Welding
5. Results and Discussion
5.1. Effect of Current Density on Temperature Field
5.2. Effect of Current Frequency on Temperature Field
5.3. Effect of Distance of Coil and Rail on Temperature Field
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, C.; Cheng, Y.F. Corrosion of Welded X100 Pipeline Steel in a Near-Neutral pH Solution. J. Mater. Eng. Perform. 2010, 19, 834–840. [Google Scholar] [CrossRef]
- Gasvik, K.; Robbersmyr, K.; Vadseth, T.; Karimi, H. Deformation measurement of circular steel plates using projected fringes. Int. J. Adv. Manuf. Technol. 2014, 70, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Jinu, G.; Sathiya, P.; Ravichandran, G.; Rathinam, A. Experimental investigation of thermal fatigue behaviour of header tube to stub welded joint in power plants. Int. J. Mater. Res. 2010, 101, 1180–1186. [Google Scholar] [CrossRef]
- Chang, K.H.; Lee, C.H.; Park, K.T.; You, Y.J.; Joo, B.C.; Jang, G.C. Analysis of residual stress in stainless steel pipe weld subject to mechanical axial tension loading. Int. J. Steel Struct. 2010, 10, 411–418. [Google Scholar] [CrossRef]
- Tokovyy, Y.V.; Ma, C.C. Analysis of residual stresses in a long hollow cylinder. Int. J. Press. Vessel. Pip. 2011, 88, 248–255. [Google Scholar] [CrossRef]
- Babakri, K.A. Improvements in flattening test performance in high frequency induction welded steel pipe mill. J. Mater. Process. Technol. 2010, 210, 2171–2177. [Google Scholar] [CrossRef]
- Han, Y.; Yu, E.; Huang, D.; Zhang, L. Simulation and Analysis of Residual Stress and Microstructure Transformation for Post Weld Heat Treatment of a Welded Pipe. J. Press. Vessel Technol. 2014, 136, 021401. [Google Scholar] [CrossRef]
- Wen, W.; Guoping, L.; Chongxun, W.; Jie, Z.; Jianxin, Z.; Yajun, Y.; Xu, S.; Xiaoyuan, J. Development and Application of Cast Steel Numerical Simulation System for Heat Treatment. Int. J. Met. 2019, 13, 618–626. [Google Scholar] [CrossRef]
- Ding, Z.; Sun, G.; Guo, M.; Jiang, X.; Li, B.; Liang, S. Effect of phase transition on micro-grinding-induced residual stress. J. Mater. Process. Technol. 2020, 281, 116647. [Google Scholar] [CrossRef]
- Li, H.; He, L.; Kang, G.; Rui, J.; Zhang, C.; Li, M. Numerical simulation and experimental investigation on the induction hardening of a ball screw. Mater. Des. 2015, 87, 863–876. [Google Scholar] [CrossRef]
- Kaneda, M.; Tsuji, A.; Ooka, H.; Suga, K. Heat transfer enhancement by external magnetic field for paramagnetic laminar pipe flow. Int. J. Heat Mass Transf. 2015, 90, 388–395. [Google Scholar] [CrossRef]
- Cho, K.-H. Coupled electro-magneto-thermal model for induction heating process of a moving billet. Int. J. Therm. Sci. 2012, 60, 195–204. [Google Scholar] [CrossRef]
- Lan, Y.; Zhao, G.; Xu, Y.; Ye, C.; Zhang, S. Effects of Quenching Temperature and Cooling Rate on the Microstructure and Mechanical Properties of U75V Rail Steel. Metallogr. Microstruct. 2019, 8, 249–255. [Google Scholar] [CrossRef]
- Codrington, J.; Ho, S.Y.; Kotousov, A. Induction heating apparatus for high temperature testing of thermo-mechanical properties. Appl. Therm. Eng. 2009, 29, 2783–2789. [Google Scholar] [CrossRef]
- Stakanchikov, V.V.; Galitsyn, G.A.; Dobuzhskaya, A.B.; Belokurova, E.V.; Matveev, V.V. Development of new heat-treatment methods for rail at OAO Nizhnetagil’skii Metallurgicheskii Kombinat. Steel Transl. 2010, 40, 501–506. [Google Scholar] [CrossRef]
- Ravichandar, D.; Balusamy, T.; Balachandran, G. Hydrogen Anti-flaking Heat Treatment in VAR89S Rail Steel. Trans. Indian Inst. Met. 2019, 72, 2729–2737. [Google Scholar] [CrossRef]
- Pelevin, F.V. Heat Transfer in Meshed Metallic Materials with Interchannel Transpiration and Two-Dimensional Intermesh Flow of a Heat-Transfer Fluid. High Temp. 2018, 56, 208–216. [Google Scholar] [CrossRef]
- Yan, P.; Gungor, O.; Thibaux, P.; Liebeherr, M.; Bhadeshia, H.K.D.H. Tackling the toughness of steel pipes produced by high frequency induction welding and heat-treatment. Mater. Sci. Eng. A 2011, 528, 8492–8499. [Google Scholar] [CrossRef] [Green Version]
- Tong, D.; Gu, J.; Fan, Y. Numerical simulation on induction heat treatment process of a shaft part: Involving induction hardening and tempering. J. Mater. Process. Technol. 2018, 262, 277–289. [Google Scholar] [CrossRef]
- Manzke, S.; Riehl, I.; Fieback, T.; Gross, U. A Reduced Numerical Model for the Thermit Rail Welding Process. Heat Transf. Eng. 2017, 39, 1296–1307. [Google Scholar] [CrossRef]
- Bosomworth, C.; Spiryagin, M.; Alahakoon, S.; Cole, C. The influence of vehicle system dynamics on rail foot heat transfer. Aust. J. Mech. Eng. 2018, 16, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Wanqing, S.; Wu, F.; Han, H.; Zhang, L. Revealing the Traces of Nonaligned Double JPEG Compression in Digital Images. Optik 2020, 204, 164196. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, W.; Su, H.; Yang, J. Observer-Based Synchronization of Chaotic Systems Satisfying Incremental Quadratic Constraints and Its Application in Secure Communication. IEEE Trans. Syst. Manand Cybern. Syst. 2018, 1–12. [Google Scholar] [CrossRef]
- El-Sayed, H.M.; Lotfy, M.; Zohny, E.D.; Riad, H.S. A three dimensional finite element analysis of insulated rail joints deterioration. Eng. Fail. Anal. 2018, 91, 201–215. [Google Scholar] [CrossRef]
- Sun, Y.; Liang, X.; Qiang, D. Finite element analysis of welding pressing force for aluminum alloy middle roof plate of urban rail transit train. J. Mech. Sci. Technol. 2017, 31, 1357–1363. [Google Scholar] [CrossRef]
- Khan, S.M.; Hammad, M.; Batool, S.; Kaneez, H. Investigation of MHD effects and heat transfer for the upper-convected Maxwell (UCM-M) micropolar fluid with Joule heating and thermal radiation using a hyperbolic heat flux equation. Eur. Phys. J. Plus 2017, 132, 158. [Google Scholar] [CrossRef]
- Yin, H.M. Regularity of weak solution to Maxwell’s equations and applications to microwave heating. J. Differ. Equ. 2017, 200, 137–161. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.J.; Wu, S.C.; Xiang, Y.B.; Li, M.Q. Simulation of three-dimensional transient temperature field during laser bending of sheet metal. Met. Sci. J. 2013, 18, 215–218. [Google Scholar] [CrossRef]
- Irfan, M.; Khan, M.; Khan, W.A. Interaction between chemical species and generalized Fourier’s law on 3D flow of Carreau fluid with variable thermal conductivity and heat sink/source: A numerical approach. Results Phys. 2018, 10, 107–117. [Google Scholar] [CrossRef]
- Zhao, X.; Peng, Z.; Yu, L. Fatigue behaviour of notched U75V-steel treated by bearing ultrasonic peening. Surf. Eng. 2017, 34, 1–8. [Google Scholar] [CrossRef]
- Gao, M.X.; Jia, H.; Jiang, J.J.; Wang, P.L.; Song, H.; Yuan, S.Y.; Wang, Z.Q. The Effect of Initial Cooling Temperature on Deformation of U75V Heavy Rail after Cooling. Adv. Eng. Forum 2011, 2, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Szychta, L.; Szychta, E.; Kiraga, K. Efficiency of Induction Heating of Rails with Oblong Heaters. Commun. Comput. Inf. Sci. 2012, 329, 328–333. [Google Scholar]
- Available online: https://inductoheat.com/gclid=EAIaIQobChMIpMzV9LLq4gIVjQQqCh0guA8HEAMYASAAEgKnxvD_BwE (accessed on 13 October 2018).
- Peng, S.; Chi, Z.; Chen, J.; Fei, Z.N. Research on optimization regulation method of ampere density and coil space factor for switched reluctance machine. In Proceedings of the International Conference on Electrical Machines & Systems, Hangzhou, China, 22–25 October 2014. [Google Scholar]
- Blasiak, S. Time-Fractional Fourier Law in a finite hollow cylinder under Gaussian-distributed heat flux. Proc. Eur. Phys. J. Web Conf. 2018, 180, 02008. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, S.; Wanqing, S.; Zhang, L.; Li, D. Exposing Speech Resampling Manipulation by Local Texture Analysis on Spectrogram Images. Electronics 2019, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Song, W.; Zio, E.; Kudreyko, A.; Zhang, Y. Remaining useful life prediction for Lithium-ion batteries using fractional Brownian motion and Fruit-fly Optimization Algorithm. Measurement 2020, 161, 107904. [Google Scholar] [CrossRef]
- Liu, H.; Song, W.; Li, M.; Kudreyko, A.; Zio, E. Fractional Levy stable motion: Finite difference iterative forecasting model. Chaossolitons Fractals 2020, 133, 109632. [Google Scholar] [CrossRef]
- Wang, G.; Qian, N.; Ding, G. Heat transfer enhancement in microchannel heat sink with bidirectional rib. Int. J. Heat Mass Transf. 2019, 136, 597–609. [Google Scholar] [CrossRef]
- Meilong, S.; Fang, W.; Baokuan, L.; Rui, C.; Zhaowei, S. A finite element analysis of Joule heating and temperature distribution of electroslag remelting processes. J. Mater. Metall. 2011, 10, 123–128, 134. [Google Scholar]
- Yulong, Y. The numerical analysis of temperature field of steel plate by high frequency induction heating. Dalian Univ. Technol. 2011, 28. [Google Scholar] [CrossRef]
Temperature (°C) | Relative Permeability | Specific Heat Capacity (J·Kg−1°C−1) | Coefficient of Thermal Conductivity (W·m−1°C−1) | Enthalpy (J/m3) | |
---|---|---|---|---|---|
25 | 200 | 1.84 × 10−7 | 472 | 93.23 | 9.16 × 107 |
100 | 194.5 | 2.54 × 10−7 | 480 | 87.68 | 3.56 × 108 |
200 | 187.6 | 3.39 × 10−7 | 498 | 83.35 | 7.53 × 108 |
300 | 181 | 4.35 × 10−7 | 524 | 0.44 | 1.16 × 109 |
400 | 169.8 | 5.41 × 10−7 | 560 | 78.13 | 2.12 × 109 |
500 | 157.3 | 6.56 × 10−7 | 615 | 76.02 | 2.65 × 109 |
600 | 140.8 | 7.9 × 10−7 | 700 | 74.16 | 3.19 × 109 |
700 | 100.36 | 9.49 × 10−7 | 1000 | 71.98 | 3.72 × 109 |
800 | 1 | 1.08 × 10−8 | 806 | 69.66 | 4.22 × 109 |
900 | 1 | 1.16 × 10−8 | 637 | 66.49 | 4.52 × 109 |
1000 | 1 | 1.2 × 10−8 | 602 | 65.92 | 5.14 × 109 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Liu, H.; Song, W.; Villecco, F. Modeling of Eddy Current Welding of Rail: Three-Dimensional Simulation. Entropy 2020, 22, 947. https://doi.org/10.3390/e22090947
Sun X, Liu H, Song W, Villecco F. Modeling of Eddy Current Welding of Rail: Three-Dimensional Simulation. Entropy. 2020; 22(9):947. https://doi.org/10.3390/e22090947
Chicago/Turabian StyleSun, Xiankun, He Liu, Wanqing Song, and Francesco Villecco. 2020. "Modeling of Eddy Current Welding of Rail: Three-Dimensional Simulation" Entropy 22, no. 9: 947. https://doi.org/10.3390/e22090947