Modified Gerchberg–Saxton (G-S) Algorithm and Its Application
Abstract
:1. Introduction
2. Preliminaries
2.1. G-S Algorithm
2.2. Application of G-S Algorithm in Image Encryption
2.3. The Importance of the Phase
3. Modified G-S Algorithm
3.1. Single-Phase Retrieval Algorithm
3.2. Double-Phase Retrieval Algorithm
3.3. Multiple-Phase Retrieval Algorithm
4. Convergence
4.1. G-S Algorithm and Single-Phase Retrieval Algorithm
4.2. Double-Phase Retrieval Algorithm and Multiple-Phase Retrieval Algorithm
5. Performance Analysis
5.1. Security and Reliability
5.2. Multiple-Image Encryption
6. Discussion and Prospect
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gerchberg, R.W. Phase determination for image and diffraction plane pictures in the electron microscope. Optik 1971, 34, 275–284. [Google Scholar]
- Gerchberg, R.W.; Saxton, W.O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Wilkins, S.W.; Gureyev, T.E.; Gao, D.; Pogany, A.; Stevenson, A.W. Phase-contrast imaging using polychromatic hard X-rays. Nature 1996, 384, 335–338. [Google Scholar] [CrossRef]
- Pogany, A.; Gao, D.; Wilkins, S.W. Contrast and resolution in imaging with a microfocus x-ray source. Rev. Sci. Instrum. 1997, 68, 2774–2782. [Google Scholar] [CrossRef]
- Millane, R.P. Phase retrieval in crystallography and optics. JOSA A 1990, 7, 394–411. [Google Scholar] [CrossRef]
- Gonsalves, R.A.; Chidlaw, R. Wavefront sensing by phase retrieval. Applications of Digital Image Processing III. Int. Soc. Opt. Photonics 1979, 207, 32–39. [Google Scholar]
- Gonsalves, R.A. Phase retrieval and diversity in adaptive optics. Opt. Eng. 1982, 21, 215829. [Google Scholar] [CrossRef]
- Chang, M.P.; Ersoy, O.K.; Dong, B.; Yang, G.; Gu, B. Iterative optimization of diffractive phase elements simultaneously implementing several optical functions. Appl. Opt. 1995, 34, 3069–3076. [Google Scholar] [CrossRef]
- Fienup, J.R. Iterative method applied to image reconstruction and to computer-generated holograms. Opt. Eng. 1980, 19, 193297. [Google Scholar] [CrossRef]
- Misell, D.L. A method for the solution of the phase problem in electron microscopy. J. Phys. D Appl. Phys. 1973, 6, L6–L9. [Google Scholar] [CrossRef]
- Fienup, J.R. Phase retrieval algorithms: A comparison. Appl. Opt. 1982, 21, 2758–2769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, E.G.; Brasher, J.D. Phase Encryption of Biometrics in Diffractive Optical Elements. Opt. Lett. 1996, 21, 1271–1273. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.K.; Watson, I.A.; Chatwin, C. Random Phase Encoding for Optical Security. Opt. Eng. 1996, 35, 2464–2469. [Google Scholar] [CrossRef]
- Zalevsky, Z.; Mendlovic, D.; Dorsch, R.G. Gerchberg–Saxton algorithm applied in the fractional Fourier or the Fresnel domain. Opt. Lett. 1996, 21, 842–844. [Google Scholar] [CrossRef]
- Li, Y.Z.; Kreske, K.; Rosen, J. Security and encryption optical systems based on a correlator with significant output images. Appl. Opt. 2000, 39, 5295–5301. [Google Scholar] [CrossRef]
- Chang, H.T.; Lu, W.C.; Kuo, C.J. Multiple-phase retrieval for optical security systems by use of random-phase encoding. Appl. Opt. 2002, 41, 4825–4834. [Google Scholar] [CrossRef]
- Hennelly, B.; Sheridan, J.T. Fractional Fourier transform-based image encryption: Phase retrieval algorithm. Opt. Commun. 2003, 226, 61–80. [Google Scholar] [CrossRef] [Green Version]
- Situ, G.H.; Zhang, J.J. A Cascaded iterative Fourier transform algorithm for optical security applications. Optik 2003, 114, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Niu, C.; Zhang, Y.; Gu, B. Optical encryption and verification technique for information coding in multiple-wavelengths in Fresnel domain. Optik 2006, 117, 516–524. [Google Scholar] [CrossRef]
- Zhang, F.; Pedrini, G.; Osten, W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Phys. Rev. A 2007, 75, 0438054. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, S. Double Image encryption based on iterative fractional Fourier transform. Opt. Commun. 2007, 275, 324–329. [Google Scholar] [CrossRef]
- Hwang, H.; Chang, H.T.; Lie, W. Multiple image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform Domain. Opt. Lett. 2009, 34, 3917–3919. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.T.; Hwang, H.-E.; Lee, C.-L.; Lee, M.-T. Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain. Appl. Opt. 2011, 50, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, X.; Sheppard, C.J.R. Optical image encryption based on phase retrieval combined with three-dimensional particle-like distribution. J. Opt. 2012, 14, 75402. [Google Scholar] [CrossRef]
- Chen, W.; Chen, X. Optical cryptography network topology based on 2D-to-3D conversion and phase-mask extraction. Opt. Lasers Eng. 2013, 51, 410–416. [Google Scholar] [CrossRef]
- Chen, W.; Chen, X. Optical multiple-image authentication based on modified Gerchberg–Saxton algorithm with random sampling. Opt. Commun. 2014, 318, 128–132. [Google Scholar] [CrossRef]
- Zhao, T.; Ran, Q.; Yuan, L.; Chi, Y.; Ma, J. Key distribution and changing key cryptosystem based on phase retrieval algorithm and RSA public-key algorithm. Math. Probl. Eng. 2015, 2015, 732609. [Google Scholar] [CrossRef]
- Rajput, S.K.; Nishchal, N.K. Fresnel domain nonlinear optical image encryption scheme based on Gerchberg–Saxton phase-retrieval algorithm. Appl. Opt. 2014, 53, 418–425. [Google Scholar] [CrossRef]
- Wang, Y.; Quan, C.; Tay, C.J. Nonlinear multiple-image encryption based on mixture retrieval algorithm in Fresnel domain. Opt. Commun. 2014, 330, 91–98. [Google Scholar] [CrossRef]
- Liu, W.; Xie, Z.; Liu, Z.; Zhang, Y.; Liu, S. Multiple-image encryption based on optical asymmetric key cryptosystem. Opt. Commun. 2015, 335, 205–211. [Google Scholar] [CrossRef]
- Zhao, T.; Ran, Q.; Chi, Y. Image encryption based on nonlinear encryption system and public-key cryptography. Opt. Commun. 2015, 338, 64–72. [Google Scholar] [CrossRef]
- Zhao, T.; Ran, Q.; Yuan, L.; Chi, Y.; Ma, J. Image encryption using fingerprint as key based on phase retrieval algorithm and public key cryptography. Opt. Lasers Eng. 2015, 72, 12–17. [Google Scholar] [CrossRef]
- Zhao, T.; Ran, Q.; Yuan, L.; Chi, Y.; Ma, J. Optical image encryption using password key based on phase retrieval algorithm. J. Mod. Opt. 2016, 63, 771–776. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.; Chen, X. Optical information authentication using compressed double-random-phase-encoded images and Quick-response Codes. Opt. Express 2015, 23, 6239–6253. [Google Scholar] [CrossRef]
- Chen, W. Hierarchically optical double-image correlation using 3D phase retrieval algorithm in fractional Fourier transform domain. Opt. Commun. 2018, 427, 374–381. [Google Scholar] [CrossRef]
- Kumar, R.; Sheridan, J.T.; Bhaduri, B. Nonlinear double image encryption using 2D non-separable linear canonical transform and phase retrieval algorithm. Opt. Laser Technol. 2018, 107, 353–360. [Google Scholar] [CrossRef]
- Piao, M.L.; Liu, Z.X.; Piao, Y.L.; Wu, H.Y.; Yu, Z.; Kim, N. Multi-depth three-dimensional image encryption based on the phase retrieval algorithm in the Fresnel and fractional Fourier transform domains. Appl. Opt. 2018, 57, 7609–7617. [Google Scholar] [CrossRef]
- Abuturab, M.R. Securing multiple information using wavelet transform and Yang-Gu mixture amplitude-phase retrieval algorithm. Opt. Lasers Eng. 2019, 118, 42–51. [Google Scholar] [CrossRef]
- Nishchal, N.K. Optical Cryptosystems; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Oppenheim, A.V.; Lim, J.S. The importance of phase in signals. Proc. IEEE 1981, 69, 529–541. [Google Scholar] [CrossRef]
- Skarbnik, N.; Zeevi, Y.Y.; Sagiv, C. The Importance of Phase in Image Processing; Technical Report; Technion—Israel Institute of Technology: Haifa, Israel, 2010; pp. 1–30. [Google Scholar]
- Fienup, J.R. Phase retrieval algorithms: A personal tour. Appl. Opt. 2013, 52, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Yin, X.; Cui, X.; Zhang, Z.; Ma, J.; Wu, G.; Zhang, L.; Xin, X. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg–Saxton-based phase retrieval algorithm. Opt. Commun. 2017, 405, 271–275. [Google Scholar] [CrossRef]
- Wang, H.; Yue, W.; Song, Q.; Liu, J.; Situ, G. A hybrid Gerchberg–Saxton-like algorithm for DOE and CGH calculation. Opt. Lasers Eng. 2017, 89, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Liu, S.; Sheridan, J.T. Iterative phase retrieval algorithms. I: Optimization. Appl. Opt. 2015, 54, 4698–4708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milster, T.D. The Gerchberg-Saxton Phase Retrieval Algorithm and Related Variations. In Optical Holography—Materials, Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 61–72. [Google Scholar]
- Nakano, K.; Suzuki, H. Analysis of singular phase based on double random phase encoding using phase retrieval algorithm. Opt. Lasers Eng. 2020, 134, 106300. [Google Scholar] [CrossRef]
- Situ, G.; Suo, J.; Dai, Q. Generalized iterative phase retrieval algorithms and their applications. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; pp. 713–720. [Google Scholar]
- Peng, X.; Zhang, P.; Wei, H.; Yu, B. Known-plaintext attack on optical encryption based on double random phase keys. Opt. Lett. 2006, 31, 1044–1046. [Google Scholar] [CrossRef]
- Barrera, J.F.; Vargas, C.; Tebaldi, M.; Torroba, R.; Bolognini, N. Known-plaintext attack on a joint transform correlator encrypting system. Opt. Lett. 2010, 35, 3553–3555. [Google Scholar] [CrossRef]
- Rajput, S.K.; Nishchal, N.K. Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform. Appl. Opt. 2013, 52, 871–878. [Google Scholar] [CrossRef]
- Zhao, T.; Ran, Q.; Yuan, L.; Chi, Y. Manipulative attack using the phase retrieval algorithm for double random phase encoding. Appl. Opt. 2015, 54, 7115–7119. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Chi, Y. Modified Gerchberg–Saxton (G-S) Algorithm and Its Application. Entropy 2020, 22, 1354. https://doi.org/10.3390/e22121354
Zhao T, Chi Y. Modified Gerchberg–Saxton (G-S) Algorithm and Its Application. Entropy. 2020; 22(12):1354. https://doi.org/10.3390/e22121354
Chicago/Turabian StyleZhao, Tieyu, and Yingying Chi. 2020. "Modified Gerchberg–Saxton (G-S) Algorithm and Its Application" Entropy 22, no. 12: 1354. https://doi.org/10.3390/e22121354