A Noisy SAR Image Fusion Method Based on NLM and GAN
Abstract
:1. Introduction
- (1)
- Due to the existence of speckle noise, SAR image de-noising is a necessary pre-processing technology; however, in our approach, we develop SAR image de-noising and fusion simultaneously, which can avoid the complex pre-processing and save more time;
- (2)
- Nonlocal matching is employed as a pre-processing technology for GAN to obtain similar block groups, which makes full use of similar information in source images and provides more effective inputs for GAN;
- (3)
- For image fusion, “standard, well-integrated” reference images often do not exist; i.e., when a deep learning method is used to fuse the source images, there is no reference tag; therefore, GAN is employed to perform the image de-noising and fusion without reference images by limiting the loss functions.
2. GAN
3. The Proposed Method
3.1. NLM
3.2. The Network of the Proposed Method
4. Experimental Results and Analysis
4.1. Datasets and Parameter Settings
4.2. Compared Methods
4.3. Valuable Metrics
- (1)
- EN
- (2)
- AVG
- (3)
- SF
- (4)
- MI
4.4. Results and Analysis
4.4.1. Experiments on SEN1–2
4.4.2. Experiments on Oslo City
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.Q. Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Shen, H.; Lin, L.; Li, J.; Yuan, Q.; Zhao, L. A residual convolutional neural network for polarimetric SAR image super-resolution. Isprs J. Photogramm. Remote Sens. 2020, 161, 90–108. [Google Scholar] [CrossRef]
- Singh, P.; Shree, R. A new homomorphic and method noise thresholding based despeckling of SAR image using anisotropic diffusion. J. King Saud Univ. Comput. Inf. Sci. 2020, 3, 137–148. [Google Scholar] [CrossRef]
- Schmitt, M.; Hughes, L.H.; Körner, M.; Zhu, X.X. Colorizing sentinel-1 sar images using a variational autoencoder conditioned on sentinel-2 imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 1045–1051. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, X.; Wang, Z.; Wang, Z.J.; Ward, R.K.; Wang, X. Deep learning for pixel-level image fusion: Recent advances and future prospects. Inf. Fusion 2018, 42, 158–173. [Google Scholar] [CrossRef]
- Li, S.; Kang, X.; Fang, L.; Hu, J.; Yin, H. Pixel-level image fusion: A survey of the state of the art. Inf. Fusion 2017, 33, 100–112. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, X.; Wang, T. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure. Inf. Fusion 2017, 35, 81–101. [Google Scholar] [CrossRef]
- Yao, Y.F.; Jing, X.Y.; Wong, H.S. Face and palmprint feature level fusion for single sample biometrics recognition. Neurocomputing 2007, 70, 1582–1586. [Google Scholar] [CrossRef]
- Prabhakar, S.; Jain, A.K. Decision-level fusion in fingerprint verification. Pattern Recognit. 2002, 35, 861–874. [Google Scholar] [CrossRef]
- Mahyari, A.G.; Yazdi, M. Panchromatic and multispectral image fusion based on maximization of both spectral and spatial similarities. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1976–1985. [Google Scholar] [CrossRef]
- He, C.; Liu, Q.; Li, H. Multimodal medical image fusion based on IHS and PCA. Procedia Eng. 2010, 7, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Yu, W.; Liang, P. FusionGAN: A generative adversarial network for infrared and visible image fusion. Inf. Fusion 2019, 48, 11–26. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Chen, X.; Peng, H.; Wang, Z.F. Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 2017, 36, 191–207. [Google Scholar] [CrossRef]
- Zhong, J.; Yang, B.; Huang, G.; Zhong, F.; Chen, Z. Remote sensing image fusion with convolutional neural network. Sens. Imaging 2016, 17, 10. [Google Scholar] [CrossRef]
- Zhang, H.; Le, Z.; Shao, Z.; Xu, H.; Ma, J. MFF-GAN: An unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion. Inf. Fusion 2021, 66, 40–53. [Google Scholar] [CrossRef]
- Coupé, P.; Hellier, P.; Kervrann, C.; Barillot, C. Bayesian non local means-based speckle filtering. IEEE Int. Symp. Biomed. Imaging Nano Macro 2008, 1291–1294. [Google Scholar]
- Deledalle, C.; Denis, L.; Tupin, F. Iterative weighted maximum likelihood de-noising with probabilistic patch-based weights. IEEE Trans. Image Process. 2009, 18, 2661–2672. [Google Scholar] [CrossRef] [Green Version]
- Parrilli, S.; Poderico, M.; Angelino, C.; Scarpa, G.; Verdoliva, L. A nonlocal approach for SAR image de-noising. Geosci. Remote Sens. Symp. 2010, 45, 726–729. [Google Scholar]
- Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L. A nonlocal SAR image de-noising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 2012, 50, 606–616. [Google Scholar] [CrossRef]
- Torres, L.; Frery, A.C. SAR image despeckling algorithms using stochastic distances and nonlocal means. arxiv 2013, arXiv:1308.4338. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 2672–2680. [Google Scholar]
- Frid-Adar, M.; Diamant, I.; Klang, E. GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification. Neurocomputing 2018, 321, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Tao, X.; Hongsheng, L. StackGAN++: Realistic image synthesis with stacked generative adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 1947–1962. [Google Scholar]
- Ma, J.; Yu, W.; Chen, C. Pan-GAN: An unsupervised pan-sharpening method for remote sensing image fusion. Inf. Fusion 2020, 62, 110–120. [Google Scholar] [CrossRef]
- Li, Q.; Lu, L.; Li, Z. Coupled GAN with relativistic discriminators for infrared and visible images fusion. IEEE Sensors J. 2019. [Google Scholar] [CrossRef]
- Li, S.; Kang, X.; Hu, J. Image fusion with guided filtering. IEEE Trans. Image Process. 2013, 22, 2864–2875. [Google Scholar]
- Zhu, Z.; Yin, H.; Chai, Y.; Li, Y.; Qi, G. A novel multi-modality image fusion method based on image decomposition and sparse representation. Inf. Sci. 2018, 432, 516–529. [Google Scholar] [CrossRef]
- Pajares, G.; de la Cruz, J.M. A wavelet-based image fusion tutorial. Pattern Recognit. 2004, 37, 1855–1872. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, S.; Wang, B. Multi-scale weighted gradient-based fusion for multi-focus images. Inf. Fusion 2014, 20, 60–72. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Wang, Z. A general framework for image fusion based on multi-scale transform and sparse representation. Inf. Fusion 2015, 24, 147–164. [Google Scholar] [CrossRef]
- Yin, M.; Liu, W.; Zhao, X.; Yin, Y.; Guo, Y. A novel image fusion algorithm based on nonsubsampled shearlet transform. Opt. Int. J. Light Electron Opt. 2014, 125, 2274–2282. [Google Scholar] [CrossRef]
- Qu, X.; Yan, J.; Xiao, H.; Zhu, Z. Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain. Acta Autom. Sin. 2008, 34, 1508–1514. [Google Scholar] [CrossRef]
- Cui, Y. No-Reference Image Quality Assessment Based on Dual-Domain Feature Fusion. Entropy 2020, 22, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Layer | Filter | Normalization | Activation | ||
---|---|---|---|---|---|
Encoder | En_1 | 5*5 Conv (n64) | BN | Leaky ReLU | |
En_2 | 3*3 Conv (n128) | BN | Leaky ReLU | ||
En_3-En_5 | 3*3 Conv (n256) | BN | Leaky ReLU | ||
Decoder | De_1 | 3*3 Conv (n256) | BN | Leaky ReLU | |
De_2 | 3*3 Conv (n128) | BN | Leaky ReLU | ||
De_3 | 5*5 Conv (n1) | - | Sigmoid | ||
D_1 | 3*3 Conv (n64) | BN | Leaky ReLU | ||
D_2 | 3*3 Conv (n128) | BN | Leaky ReLU | ||
D_3 | 3*3 Conv (n256) | BN | Leaky ReLU | ||
D_4 | 3*3 Conv (n1) | - | Sigmoid |
EN | AVG | SF | MI | |
---|---|---|---|---|
GFF | 7.2607 ± 0.0132 | 10.0256 ± 0.0636 | 24.6531 ± 0.2501 | 4.8751 ± 0.0082 |
SR | 7.2251 ± 0.0161 | 9.6989 ± 0.1087 | 23.6590 ± 0.4291 | 6.8254 ± 0.0147 |
DWT | 7.2426 ± 0.0114 | 10.1984 ± 0.0332 | 25.2251 ± 0.2619 | 6.3567 ± 0.0258 |
CNN | 7.2675 ± 0.0503 | 9.9878 ± 0.1401 | 23.2157 ± 0.4069 | 4.6531 ± 0.0074 |
MWGF | 7.2475 ± 0.0335 | 10.1538 ± 0.0408 | 25.3621 ± 0.2585 | 6.4256 ± 0.0361 |
MST-SR | 7.2659 ± 0.0354 | 10.1596 ± 0.0395 | 25.0697 ± 0.2604 | 6.3751 ± 0.0292 |
NSST | 7.3105 ± 0.1206 | 9.5635 ± 0.1537 | 23.2758 ± 0.4313 | 4.9253 ± 0.0102 |
GAN | 7.2159 ± 0.0802 | 10.3756 ± 0.0819 | 25.5327 ± 0.3608 | 4.7754 ± 0.0146 |
Proposed | 7.4225 ± 0.0205 | 10.8597 ± 0.0611 | 26.4568 ± 0.2503 | 7.5754 ± 0.0319 |
EN | AVG | SF | MI | Time(s) | |
---|---|---|---|---|---|
GFF | 7.1684 | 10.9946 | 25.8843 | 1.1225 | 0.864875 |
SR | 7.3631 | 12.3016 | 30.3622 | 3.4416 | 77.549845 |
DWT | 7.3449 | 12.1866 | 30.2316 | 3.8044 | 30.458764 |
CNN | 7.3566 | 13.4386 | 32.2077 | 1.4334 | 141.987512 |
MWGF | 7.4543 | 12.6963 | 31.2014 | 6.3148 | 3.648574 |
MST-SR | 7.4561 | 12.7560 | 31.3776 | 6.6831 | 71.457981 |
NSST | 7.4293 | 13.2218 | 31.7040 | 2.1016 | 4.987545 |
GAN | 7.3815 | 13.8934 | 32.0352 | 1.5428 | 58.145457 |
Proposed | 7.4694 | 14.7699 | 32.4543 | 7.6206 | 53.125794 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.; Ma, X.; Wang, J.; Qin, K.; Hu, S.; Zhao, Y. A Noisy SAR Image Fusion Method Based on NLM and GAN. Entropy 2021, 23, 410. https://doi.org/10.3390/e23040410
Fang J, Ma X, Wang J, Qin K, Hu S, Zhao Y. A Noisy SAR Image Fusion Method Based on NLM and GAN. Entropy. 2021; 23(4):410. https://doi.org/10.3390/e23040410
Chicago/Turabian StyleFang, Jing, Xiaole Ma, Jingjing Wang, Kai Qin, Shaohai Hu, and Yuefeng Zhao. 2021. "A Noisy SAR Image Fusion Method Based on NLM and GAN" Entropy 23, no. 4: 410. https://doi.org/10.3390/e23040410