Computational Modeling of Boundary Layer Flashback in a Swirling Stratified Flame Using a LES-Based Non-Adiabatic Tabulated Chemistry Approach
Abstract
:1. Introduction
2. Simulation Details
2.1. FPV Tabulation
2.2. LES Governing Equations
2.3. Configuration and Computational Domain
3. Results
3.1. Comparison between Simulations and Experiments
3.1.1. Non-Reacting Results
3.1.2. Flashback Result from Baseline Case
3.2. Parameter Studies
3.2.1. Influence of Tabulation Approach
3.2.2. Effect of Heat Loss on Flashback
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lieuwen, T.; McDonell, V.; Petersen, E.; Santavicca, D. Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability. J. Eng. Gas Turbines Power 2008, 130, 011506. [Google Scholar] [CrossRef]
- Eichler, C.T. Flame Flashback in Wall Boundary Layers of Premixed Combustion Systems; Verlag Dr. Hut: München, Germany, 2011. [Google Scholar]
- Syred, N.; Abdulsada, M.; Griffiths, A.; O’Doherty, T.; Bowen, P. The effect of hydrogen containing fuel blends upon flashback in swirl burners. Appl. Energy 2012, 89, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Lieuwen, T.; McDonell, V.; Santavicca, D.; Sattelmayer, T. Burner development and operability issues associated with steady flowing syngas fired combustors. Combust. Sci. Technol. 2008, 180, 1169–1192. [Google Scholar] [CrossRef]
- Taamallah, S.; Vogiatzaki, K.; Alzahrani, F.M.; Mokheimer, E.M.; Habib, M.; Ghoniem, A.F. Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations. Appl. Energy 2015, 154, 1020–1047. [Google Scholar] [CrossRef]
- Kalantari, A.; McDonell, V. Boundary layer flashback of non-swirling premixed flames: Mechanisms, fundamental research, and recent advances. Prog. Energy Combust. Sci. 2017, 61, 249–292. [Google Scholar] [CrossRef]
- Lewis, B.; von Elbe, G. Stability and structure of burner flames. J. Chem. Phys. 1943, 11, 75–97. [Google Scholar] [CrossRef]
- Baumgartner, G.; Boeck, L.R.; Sattelmayer, T. Experimental investigation of the transition mechanism from stable flame to flashback in a generic premixed combustion system with high-speed micro-particle image velocimetry and Micro-PLIF combined with chemiluminescence imaging. J. Eng. Gas Turbines Power 2016, 138, 021501. [Google Scholar] [CrossRef]
- Hoferichter, V.; Hirsch, C.; Sattelmayer, T. Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen–air flames. Combust. Theory Model. 2017, 21, 382–418. [Google Scholar] [CrossRef]
- Eichler, C.; Sattelmayer, T. Premixed flame flashback in wall boundary layers studied by long-distance micro-PIV. Exp. Fluids 2012, 52, 347–360. [Google Scholar] [CrossRef]
- Hoferichter, V.; Hirsch, C.; Sattelmayer, T. Prediction of confined flame flashback limits using boundary layer separation theory. J. Eng. Gas Turbines Power 2017, 139, 021505. [Google Scholar] [CrossRef]
- Eichler, C.; Baumgartner, G.; Sattelmayer, T. Experimental investigation of turbulent boundary layer flashback limits for premixed hydrogen-air flames confined in ducts. J. Eng. Gas Turbines Power 2012, 134, 011502. [Google Scholar] [CrossRef]
- Kurdyumov, V.; Fernandez-Tarrazo, E.; Truffaut, J.M.; Quinard, J.; Wangher, A.; Searby, G. Experimental and numerical study of premixed flame flashback. Proc. Combust. Inst. 2007, 31, 1275–1282. [Google Scholar] [CrossRef]
- Heeger, C.; Gordon, R.; Tummers, M.; Sattelmayer, T.; Dreizler, A. Experimental analysis of flashback in lean premixed swirling flames: Upstream flame propagation. Exp. Fluids 2010, 49, 853–863. [Google Scholar] [CrossRef]
- Karimi, N.; Heeger, C.; Christodoulou, L.; Dreizler, A. Experimental and theoretical investigation of the flashback of a swirling, bluff-body stabilised, premixed flame. Z. Phys. Chem. 2015, 229, 663–689. [Google Scholar] [CrossRef] [Green Version]
- Karimi, N.; McGrath, S.; Brown, P.; Weinkauff, J.; Dreizler, A. Generation of adverse pressure gradient in the circumferential flashback of a premixed flame. Flow Turbul. Combust. 2016, 97, 663–687. [Google Scholar] [CrossRef]
- Ebi, D.; Clemens, N.T. Experimental investigation of upstream flame propagation during boundary layer flashback of swirl flames. Combust. Flame 2016, 168, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Ebi, D.; Ranjan, R.; Clemens, N.T. Coupling between premixed flame propagation and swirl flow during boundary layer flashback. Exp. Fluids 2018, 59, 109. [Google Scholar] [CrossRef]
- Utschick, M.; Eiringhaus, D.; Köhler, C.; Sattelmayer, T. Predicting Flashback Limits of a Gas Turbine Model Combustor Based on Velocity and Fuel Concentration for H2-Air Mixtures. J. Eng. Gas Turbines Power 2017, 139, 041502. [Google Scholar] [CrossRef]
- Ranjan, R.; Clemens, N.T. High-repetition rate stereoscopic PIV investigation of stratified swirl flame flashback at atmospheric and elevated pressures. In Proceedings of the 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, 4–7 July 2016. [Google Scholar]
- Ranjan, R.; Clemens, N.T. Experimental investigation of boundary layer flashback in stratified swirl flames. In Proceedings of the 10th U. S. National Combustion Meeting, College Park, MD, USA, 23–26 April 2017. [Google Scholar]
- Ranjan, R.; Clemens, N. Time-Resolved Three-Component PIV Investigation of Flashback in Stratified Flames. In Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar]
- Gruber, A.; Chen, J.H.; Valiev, D.; Law, C.K. Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow. J. Fluid Mech. 2012, 709, 516–542. [Google Scholar] [CrossRef] [Green Version]
- Lietz, C.; Hassanaly, M.; Raman, V.; Kolla, H.; Chen, J.; Gruber, A. LES of premixed flame flashback in a turbulent channel. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014; p. 0824. [Google Scholar]
- Endres, A.; Sattelmayer, T. Large Eddy simulation of confined turbulent boundary layer flashback of premixed hydrogen-air flames. Int. J. Heat Fluid Flow 2018, 72, 151–160. [Google Scholar] [CrossRef]
- Endres, A.; Sattelmayer, T. Numerical investigation of pressure influence on the confined turbulent boundary layer flashback process. Fluids 2019, 4, 146. [Google Scholar] [CrossRef] [Green Version]
- Lietz, C.; Raman, V. Large Eddy Simulation of Flame Flashback in Swirling Premixed CH4/H2-Air Flames. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015; p. 0844. [Google Scholar]
- Ebi, D.; Clemens, N.T. Experimental investigation of flashback in premixed CH4/H2-Air swirl flames. In Proceedings of the 43rd AIAA Fluid Dynamics Conference, San Diego, CA, USA, 24–27 June 2013; p. 2604. [Google Scholar]
- Raman, V.; Hassanaly, M. Emerging trends in numerical simulations of combustion systems. Proc. Combust. Inst. 2019, 37, 2073–2089. [Google Scholar] [CrossRef] [Green Version]
- Pitsch, H. Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 2006, 38, 453–482. [Google Scholar] [CrossRef] [Green Version]
- Pierce, C.D.; Moin, P. Progress-variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion. J. Fluid Mech. 2004, 504, 73–97. [Google Scholar] [CrossRef]
- Van Oijen, J.; De Goey, L. Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 2000, 161, 113–137. [Google Scholar] [CrossRef] [Green Version]
- Peters, N. Laminar flamelet concepts in turbulent combustion. Symp. Combust. 1988, 21, 1231–1250. [Google Scholar] [CrossRef]
- Peters, N. Flame calculations with reduced mechanisms—An outline. In Reduced Kinetic Mechanisms for Applications in Combustion Systems; Springer: Berlin/Heidelberg, Germany, 1993; pp. 3–14. [Google Scholar]
- Pitsch, H. FlameMaster: A C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations; Technical report; University of Technology (RWTH): Aachen, Germany, 1998. [Google Scholar]
- Masri, A. Partial premixing and stratification in turbulent flames. Proc. Combust. Inst. 2015, 35, 1115–1136. [Google Scholar] [CrossRef]
- Fiorina, B.; Gicquel, O.; Vervisch, L.; Carpentier, S.; Darabiha, N. Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 2005, 140, 147–160. [Google Scholar] [CrossRef]
- Mueller, M.E. Physically-derived reduced-order manifold-based modeling for multi-modal turbulent combustion. Combust. Flame 2020, 214, 287–305. [Google Scholar] [CrossRef]
- Proch, F.; Kempf, A. Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds. Proc. Combust. Inst. 2015, 35, 3337–3345. [Google Scholar] [CrossRef]
- Fiorina, B.; Baron, R.; Gicquel, O.; Thevenin, D.; Carpentier, S.; Darabiha, N. Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theory Model. 2003, 7, 449–470. [Google Scholar] [CrossRef]
- Nunno, A.C.; Grenga, T.; Mueller, M.E. Comparative analysis of methods for heat losses in turbulent premixed flames using physically-derived reduced-order manifolds. Combust. Theory Model. 2019, 23, 42–66. [Google Scholar] [CrossRef]
- Smooke, D.M.; Miller, J.A.; Kee, R.J. Determination of adiabatic flame speeds by boundary value methods. Combust. Sci. Technol. 1983, 34, 79–90. [Google Scholar] [CrossRef]
- Mueller, M.E.; Pitsch, H. LES model for sooting turbulent nonpremixed flames. Combust. Flame 2012, 159, 2166–2180. [Google Scholar] [CrossRef]
- Germano, M. Turbulence: The filtering approach. J. Fluid Mech. 1992, 238, 325–336. [Google Scholar] [CrossRef]
- Tang, Y.; Koo, H.; Lietz, C.; Raman, V. Numerical Study on Flame Stabilization Mechanism of a multi-jet burner with LES Flamelet Approach. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016; p. 1395. [Google Scholar]
- Branley, N.; Jones, W. Large eddy simulation of a turbulent non-premixed flame. Combust. Flame 2001, 127, 1914–1934. [Google Scholar] [CrossRef]
- Hassanaly, M.; Koo, H.; Lietz, C.F.; Chong, S.T.; Raman, V. A minimally-dissipative low-Mach number solver for complex reacting flows in OpenFOAM. Comput. Fluids 2018, 162, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Olbricht, C.; Hahn, F.; Ketelheun, A.; Janicka, J. Strategies for presumed PDF modeling for LES with premixed flamelet-generated manifolds. J. Turbul. 2010, 11, N38. [Google Scholar] [CrossRef]
- Lipatnikov, A.N. Stratified turbulent flames: Recent advances in understanding the influence of mixture inhomogeneities on premixed combustion and modeling challenges. Prog. Energy Combust. Sci. 2017, 62, 87–132. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Fuel | CH4 |
Inflow bulk velocity | 2.5 m/s |
Stable equiv. ratio | 0.5 |
Flashback equiv. ratio | 0.63 |
Inflow temperature | 300 K |
Pressure | 1 bar |
Reynolds numbers | 6100 |
Case ID | Tabulation Model | Flashback Occurrence | Flashback Distance a | Arrested Time b | |
---|---|---|---|---|---|
A | 1500 K | diffusion database | yes | 75 mm | 630 ms |
B | 1200 K | diffusion database | yes | 65 mm | 590 ms |
C | 1000 K | diffusion database | yes | 52 mm | 478 ms |
D | 1200 K | premixed database | no | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Tang, Y.; Liu, Z.; Raman, V. Computational Modeling of Boundary Layer Flashback in a Swirling Stratified Flame Using a LES-Based Non-Adiabatic Tabulated Chemistry Approach. Entropy 2021, 23, 567. https://doi.org/10.3390/e23050567
Jiang X, Tang Y, Liu Z, Raman V. Computational Modeling of Boundary Layer Flashback in a Swirling Stratified Flame Using a LES-Based Non-Adiabatic Tabulated Chemistry Approach. Entropy. 2021; 23(5):567. https://doi.org/10.3390/e23050567
Chicago/Turabian StyleJiang, Xudong, Yihao Tang, Zhaohui Liu, and Venkat Raman. 2021. "Computational Modeling of Boundary Layer Flashback in a Swirling Stratified Flame Using a LES-Based Non-Adiabatic Tabulated Chemistry Approach" Entropy 23, no. 5: 567. https://doi.org/10.3390/e23050567
APA StyleJiang, X., Tang, Y., Liu, Z., & Raman, V. (2021). Computational Modeling of Boundary Layer Flashback in a Swirling Stratified Flame Using a LES-Based Non-Adiabatic Tabulated Chemistry Approach. Entropy, 23(5), 567. https://doi.org/10.3390/e23050567