Differential Phase Shift Quantum Secret Sharing Using a Twin Field with Asymmetric Source Intensities
Abstract
:1. Introduction
2. TF-DPSQSS Protocol with Asymmetric Source Intensities
3. Proof of Security
3.1. External Eavesdropping
3.2. Internal Eavesdropping
4. Numerical Simulation
4.1. Mathematical Calculation with Asymmetric Channels
4.2. Finite-Key Analysis Method for Our Protocol
4.3. Results of Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [Google Scholar] [CrossRef]
- Blakley, G.R. Safeguarding cryptographic keys. In Proceedings of the 1979 AFIPS National Computer Conference, New York, NY, USA, 4–7 June 1979; Volume 48, pp. 313–317. [Google Scholar]
- Brickell, E.F. Some ideal secret sharing schemes. In Workshop on the Theory and Application of of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1989; pp. 468–475. [Google Scholar]
- Shor, P. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Hillery, M.; Bužek, V.; Berthiaume, A. Quantum secret sharing. Phys. Rev. A 1999, 59, 1829. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Long, G.L.; Deng, F.G.; Pan, J.W. Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 2004, 69, 052307. [Google Scholar] [CrossRef] [Green Version]
- Yu, I.C.; Lin, F.L.; Huang, C.Y. Quantum secret sharing with multilevel mutually (un) biased bases. Phys. Rev. A 2008, 78, 012344. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, A.C.A.; Mueller-Quade, J.; Imai, H. Improving quantum secret-sharing schemes. Phys. Rev. A 2001, 64, 042311. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Srikanth, R. Generalized quantum secret sharing. Phys. Rev. A 2005, 71, 012328. [Google Scholar] [CrossRef] [Green Version]
- Keet, A.; Fortescue, B.; Markham, D.; Sanders, B.C. Quantum secret sharing with qudit graph states. Phys. Rev. A 2010, 82, 062315. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Yin, H.L.; Chen, T.Y.; Chen, Z.B. Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 2015, 114, 090501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahaman, R.; Parker, M.G. Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 2015, 91, 022330. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, A.; Herbauts, I.; Żukowski, M.; Bourennane, M. Secret sharing with a single d-level quantum system. Phys. Rev. A 2015, 92, 030302. [Google Scholar] [CrossRef] [Green Version]
- Kogias, I.; Xiang, Y.; He, Q.; Adesso, G. Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 2017, 95, 012315. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Tang, W.K.S.; Tso, R. Hierarchical Quantum Secret Sharing Based On Special High-Dimensional Entangled State. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 6600106. [Google Scholar] [CrossRef]
- Tittel, W.; Zbinden, H.; Gisin, N. Experimental demonstration of quantum secret sharing. Phys. Rev. A 2001, 63, 042301. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.A.; Zhang, A.N.; Zhao, Z.; Zhou, X.Q.; Lu, C.Y.; Peng, C.Z.; Yang, T.; Pan, J.W. Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 2005, 95, 200502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaertner, S.; Kurtsiefer, C.; Bourennane, M.; Weinfurter, H. Experimental Demonstration of Four-Party Quantum Secret Sharing. Phys. Rev. Lett. 2007, 98, 020503. [Google Scholar] [CrossRef] [Green Version]
- Bell, B.; Markham, D.; Herrera-Martí, D.; Marin, A.; Wadsworth, W.; Rarity, J.; Tame, M. Experimental demonstration of graph-state quantum secret sharing. Nat. Commun. 2014, 5, 5480. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Ohashi, T.; Kukita, T.; Watanabe, K.; Hayashi, S.; Honjo, T.; Takesue, H. Differential-phase-shift quantum secret sharing. Opt. Express 2008, 16, 15469–15476. [Google Scholar] [CrossRef]
- Inoue, K.; Waks, E.; Yamamoto, Y. Differential Phase Shift Quantum Key Distribution. Phys. Rev. Lett. 2002, 89, 037902. [Google Scholar] [CrossRef]
- Inoue, K.; Waks, E.; Yamamoto, Y. Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A 2003, 68, 022317. [Google Scholar] [CrossRef] [Green Version]
- Honjo, T.; Inoue, K.; Takahashi, H. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer. Opt. Lett. 2004, 29, 2797–2799. [Google Scholar] [CrossRef]
- Takesue, H.; Diamanti, E.; Honjo, T.; Langrock, C.; Fejer, M.M.; Inoue, K.; Yamamoto, Y. Differential phase shift quantum key distribution experiment over 105km fibre. New J. Phys. 2005, 7, 232. [Google Scholar] [CrossRef]
- Waks, E.; Takesue, H.; Yamamoto, Y. Security of differential-phase-shift quantum key distribution against individual attacks. Phys. Rev. A 2006, 73, 012344. [Google Scholar] [CrossRef] [Green Version]
- Diamanti, E.; Takesue, H.; Langrock, C.; Fejer, M.M.; Yamamoto, Y. 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors. Opt. Express 2006, 14, 13073–13082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeoka, M.; Guha, S.; Wilde, M.M. Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 2014, 5, 5235. [Google Scholar] [CrossRef]
- Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 2017, 8, 15043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, J.; Cao, X.Y.; Yin, H.L.; Chen, Z.B. Differential phase shift quantum secret sharing using a twin field. Opt. Express 2021, 29, 9165–9173. [Google Scholar] [CrossRef] [PubMed]
- Lucamarini, M.; Yuan, Z.L.; Dynes, J.F.; Shields, A.J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 2018, 557, 400–403. [Google Scholar] [CrossRef]
- Ma, X.; Zeng, P.; Zhou, H. Phase-matching quantum key distribution. Phys. Rev. X 2018, 8, 031043. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.B.; Yu, Z.W.; Hu, X.L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 2018, 98, 062323. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Lütkenhaus, N. Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A 2018, 98, 042332. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.L.; Fu, Y. Measurement-device-independent twin-field quantum key distribution. Sci. Rep. 2019, 9, 3045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, C.; Yin, Z.Q.; Wang, R.; Chen, W.; Wang, S.; Guo, G.C.; Han, Z.F. Twin-Field Quantum Key Distribution without Phase Postselection. Phys. Rev. Appl. 2019, 11, 034053. [Google Scholar] [CrossRef] [Green Version]
- Curty, M.; Azuma, K.; Lo, H.K. Simple security proof of twin-field type quantum key distribution protocol. NPJ Quantum Inf. 2019, 5, 64. [Google Scholar] [CrossRef]
- Yin, H.L.; Chen, Z.B. Coherent-state-based twin-field quantum key distribution. Sci. Rep. 2019, 9, 14918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.L.; Jiang, C.; Yu, Z.W.; Wang, X.B. Sending-or-not-sending twin-field protocol for quantum key distribution with asymmetric source parameters. Phys. Rev. A 2019, 100, 062337. [Google Scholar] [CrossRef] [Green Version]
- Grasselli, F.; Navarrete, Á.; Curty, M. Asymmetric twin-field quantum key distribution. New J. Phys. 2019, 21, 113032. [Google Scholar] [CrossRef] [Green Version]
- Maeda, K.; Sasaki, T.; Koashi, M. Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit. Nat. Commun. 2019, 10, 3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minder, M.; Pittaluga, M.; Roberts, G.; Lucamarini, M.; Dynes, J.; Yuan, Z.; Shields, A. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics 2019, 13, 334–338. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Z.W.; Zhang, W.; Guan, J.Y.; Chen, J.P.; Zhang, C.; Hu, X.L.; Li, H.; Jiang, C.; Lin, J.; et al. Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending. Phys. Rev. Lett. 2019, 123, 100505. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Hu, J.; Curty, M.; Qian, L.; Lo, H.K. Proof-of-Principle Experimental Demonstration of Twin-Field Type Quantum Key Distribution. Phys. Rev. Lett. 2019, 123, 100506. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Wang, W.; Qian, L.; Lo, H.K. Proof-of-principle experimental demonstration of twin-field quantum key distribution over optical channels with asymmetric losses. NPJ Quantum Inf. 2021, 7, 8. [Google Scholar] [CrossRef]
- Tomamichel, M.; Lim, C.C.W.; Gisin, N.; Renner, R. Tight finite-key analysis for quantum cryptography. Nat. Commun. 2012, 3, 634. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, F.; Kampermann, H.; Bruß, D. Finite-key effects in multipartite quantum key distribution protocols. New J. Phys. 2018, 20, 113014. [Google Scholar] [CrossRef]
- Yin, H.L.; Zhou, M.G.; Gu, J.; Xie, Y.M.; Lu, Y.S.; Chen, Z.B. Tight security bounds for decoy-state quantum key distribution. Sci. Rep. 2020, 10, 14312. [Google Scholar] [CrossRef]
- Yin, H.L.; Chen, Z.B. Finite-key analysis for twin-field quantum key distribution with composable security. Sci. Rep. 2019, 9, 17113. [Google Scholar] [CrossRef] [Green Version]
- Müller-Quade, J.; Renner, R. Composability in quantum cryptography. New J. Phys. 2009, 11, 085006. [Google Scholar] [CrossRef] [Green Version]
- Canetti, R. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, Newport Beach, CA, USA, 8–11 October 2001; pp. 136–145. [Google Scholar]
- Lütkenhaus, N. Estimates for practical quantum cryptography. Phys. Rev. A 1999, 59, 3301. [Google Scholar] [CrossRef] [Green Version]
Detector 1 | Detector 2 | |
---|---|---|
“0” | “1” | |
“1” | “0” |
0.165 | 1.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.-Y.; Gu, J.; Li, B.-H.; Yin, H.-L.; Chen, Z.-B. Differential Phase Shift Quantum Secret Sharing Using a Twin Field with Asymmetric Source Intensities. Entropy 2021, 23, 716. https://doi.org/10.3390/e23060716
Jia Z-Y, Gu J, Li B-H, Yin H-L, Chen Z-B. Differential Phase Shift Quantum Secret Sharing Using a Twin Field with Asymmetric Source Intensities. Entropy. 2021; 23(6):716. https://doi.org/10.3390/e23060716
Chicago/Turabian StyleJia, Zhao-Ying, Jie Gu, Bing-Hong Li, Hua-Lei Yin, and Zeng-Bing Chen. 2021. "Differential Phase Shift Quantum Secret Sharing Using a Twin Field with Asymmetric Source Intensities" Entropy 23, no. 6: 716. https://doi.org/10.3390/e23060716
APA StyleJia, Z.-Y., Gu, J., Li, B.-H., Yin, H.-L., & Chen, Z.-B. (2021). Differential Phase Shift Quantum Secret Sharing Using a Twin Field with Asymmetric Source Intensities. Entropy, 23(6), 716. https://doi.org/10.3390/e23060716