The Performance of Satellite-Based Links for Measurement-Device-Independent Quantum Key Distribution
Abstract
:1. Introduction
2. Theory
3. Calculation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
QKD | Quantum key distribution |
MDI-QKD | Measurement-device-independent quantum key distribution |
WCP | Weak coherent pulse |
PDT | Probability of transmittance |
References
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [Green Version]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2001, 74, 145–195. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in Quantum Cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. [Google Scholar] [CrossRef] [Green Version]
- Huttner, B.; Imoto, N.; Gisin, N.; Mor, T. Quantum Cryptography with Coherent States. Phys. Rev. A 1995, 51, 1863–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.-J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301–1350. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.K.; Curty, M.; Tamaki, K. Secure quantum key distribution. Nat. Photonics 2015, 8, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Hwang, W.-Y. Quantum Key Distribution with High Loss: Toward Global Secure Communication. Phys. Rev. Lett. 2003, 91, 57901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, H.K.; Ma, X.; Chen, K. Decoy State Quantum Key Distribution. Phys. Rev. Lett. 2005, 94, 230504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.B. Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography. Phys. Rev. Lett. 2005, 94, 230503. [Google Scholar] [CrossRef] [Green Version]
- Lo, H.K.; Curty, M.; Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.L.; Chen, T.Y.; Yu, Z.W.; Liu, H.; You, L.X.; Zhou, Y.H.; Chen, S.J.; Mao, Y.; Huang, M.Q.; Zhang, W.J.; et al. Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. Phys. Rev. Lett. 2016, 117, 190501. [Google Scholar] [CrossRef]
- Dellantonio, L.; Sørensen, A.S.; Bacco, D. High dimensional measurement device independent quantum key distribution on two dimensional subspaces. Phys. Rev. A 2018, 98, 62301. [Google Scholar] [CrossRef] [Green Version]
- Agnesi, C.; Lio, B.D.; Cozzolino, D.; Cardi, L.; Bakir, B.B.; Hassan, K.; Frera, A.D.; Ruggeri, A.; Giudice, A.; Vallone, G.; et al. Hong-Ou-Mandel interference between independent III–V on silicon waveguide integrated lasers. Opt. Lett. 2019, 44, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.H.; Yu, Z.W.; Wang, X.B. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 2015, 93, 42324. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhou, X.Y.; Guo, G.C. Realizing the measure-device-independent quantum-key-distribution with passive heralded-single photon sources. Sci. Rep. 2016, 6, 35394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, C.; Yu, Z.W.; Wang, X.B. Measurement-device-independent quantum key distribution with source state errors in photon number space. Phys. Rev. A 2016, 94, 62323. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Jun, H.; Li, J.F.; Li, X.; Li, P.Y.; Liang, P.J.; Zhou, Z.Q.; Li, C.F.; Guo, G.C. Heralded entanglement distribution between two absorptive quantum memories. Nature 2021, 594, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Tatarskii, V.I. The Effects of the Turbulent Atmosphere on Wave Propagation; Israel Program for Scientific Translations: Jerusalem, Israel, 1971. [Google Scholar]
- Ishimaru, A. Wave Propagation and Scattering in Random Media; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Andrews, L.C.; Philips, R.L.; Hopen, C.Y. Laser Beam Scintillation With Applications; SPIE Press: Bellingham, WA, USA, 2001. [Google Scholar]
- Diament, P.; Teich, M.C. Photodetection of Low-Level Radiation through the Turbulent Atmosphere. Opt. Soc. 1970, 60, 1489–1494. [Google Scholar] [CrossRef] [Green Version]
- Vasylyev, D.Y.; Semenov, A.A.; Vogel, W. Toward Global Quantum Communication: Beam Wandering Preserves Nonclassicality. Phys. Rev. Lett. 2012, 108, 220501. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, J.S.; Joshi, S.K.; Gundogan, M.; Brougham, T.; Lowndes, D.; Mazzarella, L.; Krutzik, M.; Mohapatra, S.; Dequal, D.; Vallone, G.; et al. Advances in Space Quantum Communications. arXiv 2021, arXiv:2103.12749. [Google Scholar]
- Semenov, A.A.; Vogel, W. Entanglement transfer through the turbulent atmosphere. Phys. Rev. A 2010, 81, 23835. [Google Scholar] [CrossRef] [Green Version]
- Vasylyev, D.; Semenov, A.A.; Vogel, W. Atmospheric Quantum Channels with Weak and Strong Turbulence. Phys. Rev. Lett. 2016, 117, 90501. [Google Scholar] [CrossRef]
- Vasylyev, D.; Semenov, A.A.; Vogel, W.; Günthner, K.; Thurn, A.; Bayraktar, Ö.; Marquardt, C. Free-space quantum links under diverse weather conditions. Phys. Rev. A 2017, 96, 043856. [Google Scholar] [CrossRef] [Green Version]
- Liorni, C.; Kampermann, H.; Bruß, D. Satellite-based links for quantum key distribution: Beam effects and weather dependence. New J. Phys. 2019, 21, 093055. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Jiao, R.Z. Satellite-based measurement-device-independent quantum key distribution. New J. Phys. 2020, 22, 83074. [Google Scholar] [CrossRef]
- Chen, Y.A.; Zhang, Q.; Chen, T.Y.; Cai, W.Q.; Liao, S.K.; Zhang, J.; Chen, K.; Yin, J.; Ren, J.G.; Chen, Z.; et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 2021, 589, 214–219. [Google Scholar] [CrossRef] [PubMed]
a | |||||
---|---|---|---|---|---|
1.16 | 0.2 |
Night | Condition 1 | Condition 2 |
---|---|---|
m | m | |
m | m | |
Day | Condition 1 | Condition 2 |
m | m | |
m | m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.; Dong, Q.; Cui, W.; Jiao, R. The Performance of Satellite-Based Links for Measurement-Device-Independent Quantum Key Distribution. Entropy 2021, 23, 1010. https://doi.org/10.3390/e23081010
Huang G, Dong Q, Cui W, Jiao R. The Performance of Satellite-Based Links for Measurement-Device-Independent Quantum Key Distribution. Entropy. 2021; 23(8):1010. https://doi.org/10.3390/e23081010
Chicago/Turabian StyleHuang, Guoqi, Qin Dong, Wei Cui, and Rongzhen Jiao. 2021. "The Performance of Satellite-Based Links for Measurement-Device-Independent Quantum Key Distribution" Entropy 23, no. 8: 1010. https://doi.org/10.3390/e23081010
APA StyleHuang, G., Dong, Q., Cui, W., & Jiao, R. (2021). The Performance of Satellite-Based Links for Measurement-Device-Independent Quantum Key Distribution. Entropy, 23(8), 1010. https://doi.org/10.3390/e23081010