Modulo Periodic Poisson Stable Solutions of Quasilinear Differential Equations
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. Linear System of Differential Equations
- (C1)
- is an periodic matrix for a fixed positive
- (C2)
- is an periodic function, and is a Poisson stable function with a Poisson sequence
- (C3)
- the Poisson number for the sequence is equal to zero.
- (C4)
- The multipliers of the system (2) in modulus are less than one.
3.2. Quasilinear Differential Equations
- (C5)
- the function is continuous and periodic in
- (C6)
- there exists a positive constant L such that for all
- (C7)
- (C8)
3.3. A Case with MPPS Coefficients
- (C9)
- The multipliers of the system (22) are in modulus less than one.
- (C10)
- (C11)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Minorsky, N. Introduction to Non-Linear Mechanics: Topological Methods, Analytical Methods, Non-Linear Resonance, Relaxation Oscillations; J.W. Edwards: Ann Arbor, MI, USA, 1947. [Google Scholar]
- Poincaré, H. New Methods of Celestial Mechanics, Volume I–III; Dover Publications: New York, NY, USA, 1957. [Google Scholar]
- Birkhoff, G.D. Dynamical Systems; Colloquium Publications: Providence, RI, USA, 1991. [Google Scholar]
- Nemytskii, V.V.; Stepanov, V.V. Qualitative Theory of Differential Equations; Princeton University Press: Princeton, NJ, USA, 1960. [Google Scholar]
- Sell, G.R. Topological Dynamics and Ordinary Differential Equations; Van Nostrand Reinhold Company: London, UK, 1971. [Google Scholar]
- Akhmet, M.; Fen, M.O. Unpredictable points and chaos. Commun. Nonlinear Sci. Nummer. Simulat. 2016, 40, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Akhmet, M. Domain Structured Dynamics: Unpredictability, Chaos, Randomness, Fractals, Differential Equations and Neural Networks; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Akhmet, M.; Tleubergenova, M.; Fen, M.O.; Nugayeva, Z. Unpredictable solutions of linear impulsive systems. Mathematics 2020, 8, 1798. [Google Scholar] [CrossRef]
- Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Quasilinear differential equations with strongly unpredictable solutions. Carpathian J. Math. 2020, 36, 341–349. [Google Scholar] [CrossRef]
- Akhmet, M. A Novel Deterministic Chaos and Discrete Random Processes; ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2020; pp. 53–56. [Google Scholar]
- Akhmet, M.; Fen, M.O. Non-autonomous equations with unpredictable solutions. Commun. Nonlinear Sci. Nummer. Simulat. 2018, 59, 657–670. [Google Scholar] [CrossRef]
- Akhmet, M.; Fen, M.O.; Tleubergenova, M.; Zhamanshin, A. Unpredictable solutions of linear differential and discrete equations. Turk. J. Math. 2019, 43, 2377–2389. [Google Scholar] [CrossRef]
- Akhmet, M.U.; Fen, M.O.; Alejaily, E.M. Dynamics with Chaos and Fractals; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Akhmet, M.; Fen, M.O. Poincare chaos and unpredictable functions. Commun. Nonlinear Sci. Nummer. Simulat. 2017, 41, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Akhmet, M.; Fen, M.O. Existence of unpredictable solutions and chaos. Turk. J. Math. 2017, 41, 254–266. [Google Scholar] [CrossRef]
- Akhmet, M.; Tola, A. Unpredictable strings. Kazakh Math. J. 2020, 20, 16–22. [Google Scholar]
- Akhmet, M.; Seilova, R.; Tleubergenova, M.; Zhamanshin, A. Shunting inhibitory cellular neural networks with strongly unpredictable oscillations. Commun. Nonlinear Sci. Nummer. Simulat. 2020, 89, 05287. [Google Scholar] [CrossRef]
- Akhmet, M.; Tleubergenova, M.; Nugayeva, Z. Strongly unpredictable oscillations of Hopfield-type neural networks. Mathematics 2020, 8, 1791. [Google Scholar] [CrossRef]
- Akhmet, M.; Tleubergenova, M.; Aruğaslan Çinçin, D.; Nugayeva, Z. Unpredictable oscillations for Hopfield-type neural networks with delayed and advanced arguments. Mathematics 2021, 9, 571. [Google Scholar] [CrossRef]
- Shcherbakov, B.A. Classification of Poisson-stable motions. Pseudo-recurrent motions. Dokl. Akad. Nauk SSSR (Russ.) 1962, 146, 322–324. [Google Scholar]
- Cheban, D.; Liu, Z. Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations. J. Differ. Equ. 2020, 268, 3652–3685. [Google Scholar] [CrossRef] [Green Version]
- Cheban, D.; Liu, Z. Poisson stable motions of monotone nonautonomous dynamical systems. Sci. China Math. 2019, 62, 1391–1418. [Google Scholar] [CrossRef] [Green Version]
- Shcherbakov, B.A. Topologic Dynamics and Poisson Stability of Solutions of Differential Equations; Stiinta: Chisinau, Moldova, 1972. [Google Scholar]
- Shcherbakov, B.A. Poisson stable solutions of differential equations, and topological dynamics (russian). Differ. Uravn. 1969, 5, 2144–2155. [Google Scholar]
- Shcherbakov, B.A. Recurrent solutions of differential equations. Dokl. Akad. Nauk SSSR (Russ.) 1966, 167, 1004–1007. [Google Scholar]
- Shcherbakov, B.A. The comparability of the motions of dynamical systems with regard to the nature of their recurrence (russian). Differ. Uravn. 1975, 11, 1246–1255. [Google Scholar]
- Shcherbakov, B.A. Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations; Stiinta: Chisinau, Moldova, 1985. [Google Scholar]
- Hartman, P. Ordinary Differential Equations; SIAM: Philadelphia, PA, USA, 2002. [Google Scholar]
- Farkas, M. Periodic Motion; Springer: New York, NY, USA, 1994. [Google Scholar]
- Haggarty, R. Fundamentals of Mathematical Analysis; Addison Wesley: Boston, MA, USA, 1993. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Modulo Periodic Poisson Stable Solutions of Quasilinear Differential Equations. Entropy 2021, 23, 1535. https://doi.org/10.3390/e23111535
Akhmet M, Tleubergenova M, Zhamanshin A. Modulo Periodic Poisson Stable Solutions of Quasilinear Differential Equations. Entropy. 2021; 23(11):1535. https://doi.org/10.3390/e23111535
Chicago/Turabian StyleAkhmet, Marat, Madina Tleubergenova, and Akylbek Zhamanshin. 2021. "Modulo Periodic Poisson Stable Solutions of Quasilinear Differential Equations" Entropy 23, no. 11: 1535. https://doi.org/10.3390/e23111535
APA StyleAkhmet, M., Tleubergenova, M., & Zhamanshin, A. (2021). Modulo Periodic Poisson Stable Solutions of Quasilinear Differential Equations. Entropy, 23(11), 1535. https://doi.org/10.3390/e23111535