Quantum Algorithm for Variant Maximum Satisfiability †
Abstract
:1. Introduction
1.1. Satisfiability
1.2. Maximum Satisfiability
- Hard clauses: The constraints that must be satisfied.
- Soft clauses: The constraints that may or may not be satisfied, but we want to satisfy as many as possible.
- Weighted MAX-SAT: Each clause has an associated weight cost, and the objective is to maximize the sum of the weights of the satisfied clauses.
- Partial MAX-SAT: Finds the assignment values for the variables that must be satisfied for all hard clauses and must be maximized on the soft clauses.
- Weighted partial MAX-SAT is a combination of the partial and weighted MAX-SAT.
2. Related Work
2.1. Maximum Satisfiability Applications
2.1.1. Data Analysis and Machine Learning
2.1.2. Planning and Scheduling
2.1.3. Verification and Security
2.1.4. Bioinformatics
2.1.5. Combinatorial Optimization Problems
2.2. Classical Algorithm for Maximum Satisfiability Problem
2.3. Quantum Algorithms for Maximum Satisfiability Problem
3. Definitions and Preliminaries
3.1. Nth Root of Not Gate
3.2. Controlled-Nth Root of Gate
3.3. Quantum Cost
3.4. Peres Gate
- ●
- If is 1 and is equal to 0 or vice versa, then the transformation applied to and one of the -gate will become active and the other one will be inactive which behaves as the identity. Also, will become active which produces 1 that will activate -gate, thus .
- ●
- If both and are equal to 1, then the transformation applied to and two of the -gate will become active. Also, will become inactive which produces 0 that will inactivate -gate, thus .
- ●
- If both and are equal to 0, then no transformation is applied on the gates.
- ●
- In general, -controlled Peres gate consists of − 1 Toffoli and one gate. Each -qubit Peres gate can be built recursively using the − 1 Peres gate block and a few additional controlled gates. The reader can appreciate this recursive way of building counter blocks of any size by analyzing Figure 5 in which a 4-controlled gate at the right uses the 3-controlled Peres gate in four upper qubits.
3.5. Quantum Oracle
4. Proposed Quantum Algorithm for Maximum Satisfiability
4.1. Grover’s Search Algorithm
- 1.
- Phase inversion: apply the oracle. If the oracle recognizes the solution, then the phase of the desired state is inverted
- 2.
- Apply the Hadamard transform ()
- 3.
- Zero state phase shift: Perform the condition phase shift, in which all states receive a phase shift of except for the zero state .
- 4.
- Apply the Hadamard transform
4.2. Quantum Counter
4.3. Traditional Oracle for Satisfiability Boolean Function
4.4. Proposed Construction of a Quantum Oracle for MAX-SAT
4.5. Verifying an Unsatisfiable Function
5. Calculation of Quantum Cost
5.1. Calculation of Quantum Counter Size
- ●
- ancilla qubits when is not a power of 2
- ●
- ancilla qubits when is power of 2
5.2. Quantum Cost Calculation for Quantum Counter
6. Variants of SAT Oracles Using Quantum Counter
6.1. Oracle for SOPs
6.2. Oracle for Product of SOPs (POSOP SAT)
6.3. Oracle for Exclusive-or-Sum-of-Products (ESOP)
7. OR Satisfiability Problems for Electronic Design Automation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marques-Silva, J.; Glass, T. Combinational equivalence checking using satisfiability and recursive learning. In Proceedings of the Conference on Design, Automation and Test in Europe, Munich, Germany, 1 January 1999; p. 33. [Google Scholar]
- Konuk, H.; Larrabee, T. Explorations of sequential ATPG using Boolean satisfiability. In Proceedings of the Digest of Papers Eleventh Annual 1993 IEEE VLSI Test Symposium, Atlantic City, NJ, USA, 6–8 April 1993; IEEE: Manhattan, NY, USA, 1993; pp. 85–90. [Google Scholar]
- Biere, A.; Cimatti, A.; Clarke, E.M.; Fujita, M.; Zhu, Y. Symbolic model checking using SAT procedures instead of BDDs. In Proceedings of the 36th Annual ACM/IEEE Design Automation Conference, New Orleans, LA, USA, 21–25 June 1999; pp. 317–320. [Google Scholar]
- Hong, T.; Li, Y.; Park, S.B.; Mui, D.; Lin, D.; Kaleq, Z.A.; Hakim, N.; Naeimi, H.; Gardner, D.S.; Mitra, S. QED: Quick error detection tests for effective post-silicon validation. In Proceedings of the 2010 IEEE International Test Conference, Austin, TX, USA, 2–4 November 2010; IEEE: Manhattan, NY, USA, 2010; pp. 1–10. [Google Scholar]
- Wang, P.W.; Donti, P.; Wilder, B.; Kolter, Z. Satnet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; PMLR: New York, NY, USA, 2019; pp. 6545–6554. [Google Scholar]
- Cook, S.A. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing, Shaker Heights, OH, USA, 3–5 May 1971; pp. 151–158. [Google Scholar]
- Kohli, R.; Krishnamurti, R.; Mirchandani, P. The minimum satisfiability problem. SIAM J. Discret. Math. 1994, 7, 275–283. [Google Scholar] [CrossRef]
- Biere, A.; Heule, M.; van Maaren, H. (Eds.) Handbook of Satisfiability; IOS Press: Washington, DC, USA, 2009; Volume 185. [Google Scholar]
- Fu, Z.; Malik, S. On solving the partial MAX-SAT problem. In Proceedings of the International Conference on Theory and Applications of Satisfiability Testing, Seattle, WA, USA, 12–15 August 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 252–265. [Google Scholar]
- Berg, O.J.; Hyttinen, A.J.; Järvisalo, M.J. Applications of MaxSAT in data analysis. In Proceedings of the Pragmatics of SAT 2015 and 2018, Oxford, UK, 7 July 2018. [Google Scholar]
- Berg, J.; Järvisalo, M. Cost-optimal constrained correlation clustering via weighted partial maximum satisfiability. Artif. Intell. 2017, 244, 110–142. [Google Scholar] [CrossRef] [Green Version]
- Berg, J.; Järvisalo, M.; Malone, B. Learning optimal bounded treewidth Bayesian networks via maximum satisfiability. In Proceedings of the Artificial Intelligence and Statistics, Reykjavik, Iceland, 22–25 April 2014; PMLR: New York, NY, USA, 2014; pp. 86–95. [Google Scholar]
- Hyttinen, A.; Saikko, P.; Järvisalo, M. A core-guided approach to learning optimal causal graphs. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), Melbourne, Australia, 19–25 August 2017. [Google Scholar]
- Malioutov, D.; Meel, K.S. MLIC: A MaxSAT-based framework for learning interpretable classification rules. In Proceedings of the International Conference on Principles and Practice of Constraint Programming, Lille, France, 27–31 August 2018; Springer: Cham, Switzerland, 2018; pp. 312–327. [Google Scholar]
- Dimitrova, R.; Ghasemi, M.; Topcu, U. Maximum realizability for linear temporal logic specifications. In Proceedings of the International Symposium on Automated Technology for Verification and Analysis, Los Angeles, CA, USA, 7–10 October 2018; Springer: Cham, Switzerland, 2018; pp. 458–475. [Google Scholar]
- Zhang, L.; Bacchus, F. MAXSAT heuristics for cost optimal planning. In Proceedings of the AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012; Volume 26, pp. 1846–1852. [Google Scholar]
- Muise, C.; Beck, J.C.; McIlraith, S.A. Optimal partial-order plan relaxation via MaxSAT. J. Artif. Intell. Res. 2016, 57, 113–149. [Google Scholar] [CrossRef]
- Demirović, E.; Musliu, N.; Winter, F. Modeling and solving staff scheduling with partial weighted maxSAT. Ann. Oper. Res. 2019, 275, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Safarpour, S.; Mangassarian, H.; Veneris, A.; Liffiton, M.H.; Sakallah, K.A. November. Improved design debugging using maximum satisfiability. In Formal Methods in Computer Aided Design (FMCAD'07); IEEE: Cham, Switzerland, 2007; pp. 13–19. [Google Scholar]
- Chen, Y.; Safarpour, S.; Veneris, A.; Marques-Silva, J. Spatial and temporal design debug using partial MaxSAT. In Proceedings of the 19th ACM Great Lakes symposium on VLSI, Boston Area, MA, USA, 10–12 May 2009; pp. 345–350. [Google Scholar]
- Chen, Y.; Safarpour, S.; Marques-Silva, J.; Veneris, A. Automated design debugging with maximum satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2010, 29, 1804–1817. [Google Scholar] [CrossRef] [Green Version]
- Jose, M.; Majumdar, R. Cause clue clauses: Error localization using maximum satisfiability. ACM SIGPLAN Not. 2011, 46, 437–446. [Google Scholar] [CrossRef]
- Zhu, C.S.; Weissenbacher, G.; Malik, S. Post-silicon fault localisation using maximum satisfiability and backbones. In Proceedings of the 2011 Formal Methods in Computer-Aided Design (FMCAD), Austin, TX, USA, 30 October–2 November 2011; IEEE: Cham, Switzerland, 2011; pp. 63–66. [Google Scholar]
- Wickramaarachchi, G.T.; Qardaji, W.H.; Li, N. An efficient framework for user authorization queries in RBAC systems. In Proceedings of the 14th ACM Symposium on Access Control Models and Technologies, Stresa, Italy, 3–5 June 2009; pp. 23–32. [Google Scholar]
- Liao, X.; Zhang, H.; Koshimura, M. Reconstructing AES key schedule images with SAT and MaxSAT. IEICE Trans. Inf. Syst. 2016, 99, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Shabani, A.; Alizadeh, B. PMTP: A MAX-SAT-based approach to detect hardware trojan using propagation of maximum transition probability. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 39, 25–33. [Google Scholar] [CrossRef]
- Feng, Y.; Bastani, O.; Martins, R.; Dillig, I.; Anand, S. Automated synthesis of semantic malware signatures using maximum satisfiability. arXiv 2016, arXiv:1608.06254. [Google Scholar]
- Lin, P.C.K.; Khatri, S.P. Application of Max-SAT-based ATPG to optimal cancer therapy design. BMC Genom. 2012, 13, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Guerra, J.; Lynce, I. Reasoning over biological networks using maximum satisfiability. In Proceedings of the International Conference on Principles and Practice of Constraint Programming, Québec City, QC, Canada, 8–12 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 941–956. [Google Scholar]
- Martins, R. Solving RNA alignment with MaxSAT. In MaxSAT Evaluation; University of Helsinki: Helsinki, Finland, 2017; p. 29. [Google Scholar]
- Graça, A.; Marques-Silva, J.; Lynce, I.; Oliveira, A.L. Haplotype inference with pseudo-Boolean optimization. Ann. Oper. Res. 2011, 184, 137–162. [Google Scholar] [CrossRef]
- Li, C.M.; Quan, Z. An efficient branch-and-bound algorithm based on maxsat for the maximum clique problem. In Proceedings of the Twenty-fourth AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010. [Google Scholar]
- Li, C.M.; Jiang, H.; Xu, R.C. Incremental MaxSAT reasoning to reduce branches in a branch-and-bound algorithm for MaxClique. In Proceedings of the International Conference on Learning and Intelligent Optimization, Lille, France, 12–15 January 2015; Springer: Cham, Switzerland, 2015; pp. 268–274. [Google Scholar]
- Fang, Z.; Li, C.M.; Qiao, K.; Feng, X.; Xu, K. Solving Maximum Weight Clique Using Maximum Satisfiability Reasoning. In Proceedings of the ECAI, Prague, Czech, 18–22 August 2014; pp. 303–308. [Google Scholar]
- Berg, J.; Järvisalo, M. SAT-based approaches to treewidth computation: An evaluation. In Proceedings of the 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, Limassol, Cyprus, 10–12 November 2014; IEEE: Cham, Switzerland, 2014; pp. 328–335. [Google Scholar]
- Morgado, A.; Marques-Silva, J. Combinatorial optimization solutions for the maximum quartet consistency problem. Fundam. Inform. 2010, 102, 363–389. [Google Scholar] [CrossRef] [Green Version]
- Smyth, K.; Hoos, H.H.; Stützle, T. Iterated robust tabu search for MAX-SAT. In Proceedings of the Conference of the Canadian Society for Computational Studies of Intelligence, Halifax, NS, Canada, 11–13 June 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 129–144. [Google Scholar]
- Mastrolilli, M.; Gambardella, L.M. Maximum satisfiability: How good are tabu search and plateau moves in the worst-case? Eur. J. Oper. Res. 2005, 166, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Lei, Z. Old techniques in new ways: Clause weighting, unit propagation and hybridization for maximum satisfiability. Artif. Intell. 2020, 287, 103354. [Google Scholar] [CrossRef]
- Marchiori, E.; Rossi, C. A flipping genetic algorithm for hard 3-SAT problems. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), Orlando, FL, USA, 13–17 July 1999; pp. 393–400. [Google Scholar]
- Layeb, A.; Deneche, A.H.; Meshoul, S. A new artificial immune system for solving the maximum satisfiability problem. In Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Cordoba, Spain, 1–4 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 136–142. [Google Scholar]
- Munawar, A.; Wahib, M.; Munetomo, M.; Akama, K. Hybrid of genetic algorithm and local search to solve max-sat problem using NVIDIA CUDA framework. Genet. Program. Evolvable Mach. 2009, 10, 391–415. [Google Scholar] [CrossRef] [Green Version]
- Lardeux, F.; Saubion, F.; Hao, J.K. GASAT: A genetic local search algorithm for the satisfiability problem. Evol. Comput. 2006, 14, 223–253. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.; Logemann, G.; Loveland, D. A machine program for theorem-proving. Commun. ACM 1962, 5, 394–397. [Google Scholar] [CrossRef]
- Li, C.M.; Manya, F.; Planes, J. Exploiting unit propagation to compute lower bounds in branch and bound Max-SAT solvers. In Proceedings of the International Conference on Principles and Practice of Constraint Programming, Sitges, Spain, 1–5 October 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 403–414. [Google Scholar]
- Li, C.M.; Xu, Z.; Coll, J.; Manyà, F.; Habet, D.; He, K. Combining clause learning and branch and bound for MaxSAT. In Proceedings of the 27th International Conference on Principles and Practice of Constraint Programming (CP 2021), Montpellier, France, 25–29 October 2021; Schloss Dagstuhl-Leibniz-Zentrum für Informatik: Wadern, Germany, 2021. [Google Scholar]
- Gu, J. Efficient local search for very large-scale satisfiability problems. ACM SIGART Bull. 1992, 3, 8–12. [Google Scholar] [CrossRef]
- Bian, Z.; Chudak, F.; Macready, W.; Roy, A.; Sebastiani, R.; Varotti, S. Solving sat and maxsat with a quantum annealer: Foundations and a preliminary report. In Proceedings of the International Symposium on Frontiers of Combining Systems, Brasília, Brazil, 27–29 September 2017; Springer: Cham, Switzerland, 2017; pp. 153–171. [Google Scholar]
- Cheng, S.T.; Tao, M.H. Quantum cooperative search algorithm for 3-SAT. J. Comput. Syst. Sci. 2007, 73, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, S.-J.; Kim, T.; Biamonte, J.; Perkowski, M. The cost of Quantum Gate Primitives. J. Mult. Valued Log. Soft Comput. 2006, 12, 561–573. [Google Scholar]
- Barenco, A.; Bennett, C.H.; Cleve, R.; DiVincenzo, D.P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.A.; Weinfurter, H. Elementary gates for quantum computation. Phys. Rev. A 1999, 52, 3457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslov, D.; Dueck, G.W. Improved quantum cost for n-bit Toffoli gates. Electron. Lett. 2003, 39, 1790–1791. [Google Scholar] [CrossRef]
- Peres, A. Reversible logic and quantum computers. Phys. Rev. A 1985, 32, 3266. [Google Scholar] [CrossRef] [PubMed]
- Szyprowski, M.; Kerntopf, P. Low quantum cost realization of generalized peres and toffoli gates with multiple-control signals. In Proceedings of the 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), Beijing, China, 5–8 August 2013; IEEE: Manhattan, NY, USA, 2013; pp. 802–807. [Google Scholar]
- Nielsen, M.A.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Wong, R.; Chang, W.L. Quantum speedup for protein structure prediction. IEEE Trans. NanoBiosci. 2021, 20, 323–330. [Google Scholar] [CrossRef]
- Chang, W.L.; Chen, J.C.; Chung, W.Y.; Hsiao, C.Y.; Wong, R.; Vasilakos, A.V. Quantum speedup and mathematical solutions of implementing bio-molecular solutions for the independent set problem on IBM quantum computers. IEEE Trans. NanoBiosci. 2021, 20, 354–376. [Google Scholar] [CrossRef]
- Wong, R.; Chang, W.L. Fast quantum algorithm for protein structure prediction in hydrophobic-hydrophilic model. J. Parallel Distrib. Comput. 2022, 164, 178–190. [Google Scholar] [CrossRef]
- Aleksandrowicz, G.; Alexander, T.; Barkoutsos, P.; Bello, L.; Ben-Haim, Y.; Bucher, D.; Cabrera-Hernández, F.J.; Carballo-Franquis, J.; Chen, A.; Chen, C.F.; et al. Qiskit: An Open-Source Framework for Quantum Computing; Zenodo: Honolulu, HI, USA, 2019. [Google Scholar]
- Perkowski, M. Inverse Problems, Constraint Satisfaction, Reversible Logic, Invertible Logic and Grover Quantum Oracles for Practical Problems. In Proceedings of the International Conference on Reversible Computation, Oslo, Norway, 9–10 July 2020; Springer: Cham, Switzerland, 2020; pp. 3–32. [Google Scholar]
- Alasow, A.; Perkowski, M. Quantum Algorithm for Maximum Satisfiability. In Proceedings of the 2022 IEEE 52nd International Symposium on Multiple-Valued Logic (ISMVL), Dallas, TX, USA, 18–20 May 2022; pp. 27–34. [Google Scholar]
- Csanky, L. On the Generalized Reed-Muller Canonical Form of Boolean Functions: Research Project. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1972. [Google Scholar]
- Garey, M.R.; Johnson, D.S. A Guide to the Theory of NP-Completeness. Computers and Intractability; W. H. Freeman & Co: New York, NY, USA, 1979. [Google Scholar]
- Lin, H.P.; Jiang, J.H.R.; Lee, R.R. To SAT or not to SAT: Ashenhurst decomposition in a large scale. In Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, USA, 10–13 November 2008; IEEE: Manhattan, NY, USA, 2008; pp. 32–37. [Google Scholar]
- Li, Y.; Tsai, E.; Perkowski, M.; Song, X. Grover-based Ashenhurst-Curtis decomposition using quantum language quipper. Quantum Inf. Comput. 2019, 19, 35–66. [Google Scholar] [CrossRef]
- Breuer, M.A.; Preiss, R.J. Design Automation of Digital Systems; Prentice Hall: Hoboken, NJ, USA, 1972; Volume 1. [Google Scholar]
- Slagle, J.R. Artificial Intelligence: The Heuristic Programming Approach; McGraw-Hill: New York, NY, USA, 1971. [Google Scholar]
- Kohavi, Z.; Jha, N.K. Switching and Finite Automata Theory; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Lieberherr, K.; Specker, E. Complexity of partial satisfaction. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), Washington, DC, USA, 29–31 October 1979; IEEE: Manhattan, NY, USA, 1979; pp. 132–139. [Google Scholar]
- Perkowski, M. State-Space Approach to the Design of a Multipurpose Problem-Solver for Logic Design; KU Leuven: North Holland, Amsterdam, 1978. [Google Scholar]
- Perkowski, M. Synthesis of multioutput three level NAND networks. In Proceedings of the Seminar on Computer Aided Design, Budapest, Hungary, 3–5 November 1976; pp. 238–265. [Google Scholar]
- Perkowski, M. Minimization of two-level networks from negative gates. In Proceedings of the Midwest, Lincoln, Nebraska, 10–12 August 1986; Volume 86, pp. 756–761. [Google Scholar]
- Perkowski, M.; Liu, J.; Brown, J. A System for Fast Prototyping of Logic Design Programs. In Proceedings of the 1987 Midwest Symposium on Circuits and Systems, Syracuse, NY, USA, 17–18 August 1987. [Google Scholar]
- Sasao, T. Input variable assignment and output phase optimization of PLA’s. IEEE Trans. Comput. 1984, 33, 879–894. [Google Scholar] [CrossRef]
- Nilsson, J. Problem-Solving Methods in Artificial Intelligence; McGraw-Hill: New York, NY, USA, 1971. [Google Scholar]
- Nguyen, L.B.; Perkowdki, M.A.; Goldstein, N.B. Palmini—Fast Boolean minimizer for personal computers. In Proceedings of the 24th ACM/IEEE Design Automation Conference, Miami Beach, FL, USA, 28 June–1 July 1987; pp. 615–621. [Google Scholar]
- Perkowski, M.; Mishchenko, A. Logic synthesis for regular layout using satisfiability. In Proceedings of the International Symposium on Boolean Problems, Freiberg, Germany, 19–20 September 2002. [Google Scholar]
ab\c | 0 | 1 |
---|---|---|
00 | 0 | 0 |
01 | 1 | 1 |
11 | 0 | 1 |
10 | 0 | 1 |
Number of Terms (Clauses) | Total Qubits for Quantum Counter |
---|---|
2 | = 3 |
3 | = 3 |
4 | = 4 |
5…7 | = 4 |
8 | = 5 |
9…15 | = 5 |
16 | = 6 |
17…31 | = 6 |
32 | = 7 |
33… 63 | = 7 |
64 | = 8 |
65…127 | = 8 |
128 | = 9 |
129…255 | = 9 |
256 | = 10 |
257…511 | = 10 |
… | … |
… | … |
T |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alasow, A.; Jin, P.; Perkowski, M. Quantum Algorithm for Variant Maximum Satisfiability. Entropy 2022, 24, 1615. https://doi.org/10.3390/e24111615
Alasow A, Jin P, Perkowski M. Quantum Algorithm for Variant Maximum Satisfiability. Entropy. 2022; 24(11):1615. https://doi.org/10.3390/e24111615
Chicago/Turabian StyleAlasow, Abdirahman, Peter Jin, and Marek Perkowski. 2022. "Quantum Algorithm for Variant Maximum Satisfiability" Entropy 24, no. 11: 1615. https://doi.org/10.3390/e24111615
APA StyleAlasow, A., Jin, P., & Perkowski, M. (2022). Quantum Algorithm for Variant Maximum Satisfiability. Entropy, 24(11), 1615. https://doi.org/10.3390/e24111615