Discussion on the Relationship between Computation, Information, Cognition, and Their Embodiment
Abstract
:1. Introduction
2. Gordana Dodig-Crnkovic: Cognition in the Info-Computational Nature Framework
2.1. Definition of Terms Used in the Framework
2.2. Computing Nature and Evolution of Cognition
2.3. Information, Computation, Cognition: An Eternal Golden Braid
- (Shannon) (data, pattern, signal) (data communication)—the level of syntax
- (Shannon + Boltzmann) (intentionality, aboutness, reference, representation, relation to object or referent)—the level of semantics and
- ((Shannon + Boltzmann) + Darwin) (function, interpretation, use, practical consequence)—the level of pragmatics.
2.4. Old Computationalism: The Turing Machine Model of Abstract (Logical) Information Processing
“Biological processes are often compared to computation and modeled on the Universal Turing Machine. While many systems or aspects of systems can be well described in this manner, Turing computation can only compute what it has been programmed for. It cannot learn or adapt to new situations. Yet, adaptation, choice, and learning are all hallmarks of living organisms”.[72]
2.5. New Computationalism: Physical Levels of Embodied Distributed and Concurrent Computation—Morphological Computation
- Anytransformation of information and/or information representation. That leads to natural computationalism in its most general form.
- Adiscrete transformation of information and/or information representation. That leads to natural computationalism in the Zuse and Wolfram form, with discrete automata as a basis.
- Symbol manipulation. That leads to the Turing model of computation and its equivalents.
2.6. Actor Model of Morphological Computation
2.7. Natural Information: Agent-Based and Relative
“Information is a difference that makes a difference”.[83]
“Information expresses the fact that a system is in a certain configuration that is correlated to the configuration of another system. Any physical system may contain information about another physical system”.[84]
Information is defined as the difference in one physical system that makes a difference in another physical system.
2.8. Agency-Based Hierarchies of Levels for an Autonomous Agent
2.9. Morphological Computation on a Cellular Level: Somatic Bio-Computation as Dynamic of Cellular Information
3. Marcin Miłkowski: Reply to “Cognition in the Info-Computational Nature Framework”
3.1. Computation? Yes! But Not Just Everywhere
- (1)
- I do not share the idea that the physical is best understood in terms of information.
- (2)
- My account of computational mechanism is more constrained than that of information processing.
- (3)
- I take the notion of cognition to be highly context-dependent (or relative to a theory).
3.2. Natural Information Is Everywhere
- Concept C is defined to cover all its referents but also to instances intuitively understood as exemplary non-Cs, which means that C is overextended.
- If concept C is overextended, then its definition is too wide.
- If the definition of C is too wide, then the use of C to distinguish between specific relevant instances of C and cases in which C is not present is impossible.
3.3. Computation versus Information Processing
- (1)
- The parts of the mechanism should have been selected as types (and not as particular tokens) according to a certain design. Think of DNA involved in folding proteins: it does not specify proteins as individuals (tokens) but as types only.
- (2)
- The selection process should be causally relevant to the existence of the mechanism.
3.4. The Context-Dependent Notion of Cognition
4. Gordana Dodig-Crnkovic: Answers to Criticism of Marcin Miłkowski towards the Computing Nature as an Approach to Framing Cognition in Terms of Information and Computation
4.1. Computation? Yes! And Why Not Everywhere? Matter-Energy Is Everywhere; Space-Time as Well
4.2. Materiality of the Info-Computational Universe: Physical Computation, Morphological Computation
4.3. In Defense of Constructivism
“Indeed, naturalist account of ontology looks at our best theories and their ontological commitments, which makes ontology reasonably dependent on our epistemology, we need not understand that what there is, depends on whether it could be theorized or thought about, even in a dispositional fashion.”(MM)
4.4. Computation versus Information Processing: Sense-Making
“While, following Chalmers [124], one can redescribe any causal process in computational terms, such redescription does not bring much insight in itself unless there is some cognitive purchase: predictive, explanatory, or related to control.”(MM)
“In the mechanistic framework, it is essential that mechanisms are posited as mechanisms responsible for particular phenomena.”(MM)
4.5. The Context-Dependent Notion of Cognition? Yes, Naturally: Unlike the Abstract Turing Machine Model, Morphological Computation Is Embodied, Embedded, and Context-Dependent Natural Process
5. Marcin Miłkowski: Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Floridi, L. Informational realism. In Selected Papers from Conference on Computers and Philosophy-Volume 37 (CRPIT ’03); Weckert, J., Al-Saggaf, Y., Eds.; Australian Computer Society, Inc.: Darlinghurst, Australia, 2003; pp. 7–12. [Google Scholar]
- Sayre, K.M. Cybernetics and the Philosophy of Mind; Routledge & Kegan Paul: London, UK, 1976. [Google Scholar]
- Dodig-Crnkovic, G. Modeling life as cognitive info-computation. In Computability in Europe 2014. LNCS; Beckmann, A., Csuhaj-Varjú, E., Meer, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 153–162. [Google Scholar]
- Almér, A.; Dodig-Crnkovic, G.; von Haugwitz, R. Collective cognition and distributed information processing from bacteria to humans. In Proceedings of the AISB Conference Kent 2015, Canterbury, UK, 20–22 April 2015. [Google Scholar]
- Zeilinger, A. The message of the quantum. Nature 2005, 438, 743. [Google Scholar]
- Vedral, V. From Micro to Macro; World Scientific: Singapore, 2018. [Google Scholar]
- Vedral, V. Decoding Reality: The Universe as Quantum Information; Oxford University Press: Oxford, UK, 2010; ISBN 9780199237692. [Google Scholar]
- Maturana, H.; Varela, F. Autopoiesis and Cognition: The Realization of the Living; D. Reidel Pub. Co.: Dordrecht, The Netherlands, 1980; ISBN 9789027710154. [Google Scholar]
- Maturana, H.; Varela, F. The Tree of Knowledge; Shambala: Boulder, CO, USA, 1992. [Google Scholar]
- Ben-Jacob, E.; Shapira, Y.; Tauber, A.I. Smart bacteria. In Chimera and Consciousness. Evolution of the Sensory Self; Margulis, L., Asikainen, C.A., Krumbein, W.E., Eds.; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Ben-Jacob, E. Bacterial wisdom, Gödels theorem and creative genomic webs. Physica A 1998, 248, 57–76. [Google Scholar] [CrossRef]
- Shapiro, J.A. Evolution: A View from the 21st Century; FT Press Science: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Burgin, M. Super-Recursive Algorithms; Springer-Verlag New York Inc.: New York, NY, USA, 2005; ISBN 0387955690. [Google Scholar]
- Sloman, A. What’s information, for an organism or intelligent machine? How can a machine or organism mean? In Information and Computation; Dodig-Crnkovic, G., Burgin, M., Eds.; World Scientific Publishing Co. Series in Information Studies: Singapore, 2012. [Google Scholar]
- Dodig-Crnkovic, G. Dynamics of Information as Natural Computation. Information 2011, 2, 460–477. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G. Significance of Models of Computation, from Turing Model to Natural Computation. Minds Mach. 2011, 21, 301–322. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G.; Müller, V.C. A dialogue concerning two world systems: Info-computational vs. mechanistic. In Information and Computation; Dodig Crnkovic, G., Burgin, M., Eds.; World Scientific Pub Co Inc: Singapore, 2011; pp. 149–184. ISBN 978-981-4295-47-5. [Google Scholar]
- Dodig-Crnkovic, G. The Info-Computational Nature of Morphological Computing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 59–68. [Google Scholar]
- Dodig-Crnkovic, G.; Burgin, M. Unconventional Algorithms: Complementarity of Axiomatics and Construction. Entropy 2012, 14, 2066–2080. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G.; Giovagnoli, R. Natural/unconventional computing and its philosophical significance. Entropy 2012, 14, 2408–2412. [Google Scholar]
- Dodig-Crnkovic, G. Alan Turing’s legacy: Info-computational philosophy of nature. In Proceedings of the AISB/IACAP World Congress 2012: Natural Computing/Unconventional Computing and Its Philosophical Significance, Part of Alan Turing Year 2012, Birmingham, UK, 2012. [Google Scholar]
- Dodig-Crnkovic, G. Information and energy/matter. Information 2012, 3, 751–755. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G. Physical computation as dynamics of form that glues everything together. Information 2012, 3, 204–218. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G.; Giovagnoli, R. Computing Nature. Turing Centenary Perspective; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7, ISBN 978-3-642-37224-7. [Google Scholar]
- Dodig-Crnkovic, G. Investigations into Information Semantics and Ethics of Computing; Mälardalen University Press: Västerås, Sweden, 2006; ISBN 91-85485-23-3. [Google Scholar]
- Dodig-Crnkovic, G. Knowledge generation as natural computation. In Proceedings of the International Conference on Knowledge Generation, Orlando, FL, USA, 2007. [Google Scholar]
- Dodig-Crnkovic, G. Epistemology Naturalized: The Info-Computationalist Approach. APA Newsl. Philos. Comput. 2007, 06, 9–13. [Google Scholar]
- Dodig-Crnkovic, G. Information and Computation Nets. Investigations into Info-Computational World; Vdm Verlag: Saarbrucken, Germany, 2009; ISBN 9783639199673. [Google Scholar]
- Dodig-Crnkovic, G. Biological Information and Natural Computation. In Thinking Machines and the Philosophy of Computer Science; Vallverdú, J., Ed.; IGI Global: Hershey, PA, USA, 2010; ISBN 9781616920142. [Google Scholar]
- Dodig-Crnkovic, G. Constructive research and info-computational knowledge generation. In Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2010; Volume 314, pp. 359–380. [Google Scholar]
- Dodig-Crnkovic, G. The Cybersemiotics and Info-computationalist research programmes as platforms for knowledge production in organisms and machines. Entropy 2010, 12, 4878–4901. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G. Cognition as Morphological/Morphogenetic Embodied Computation In Vivo. Entropy 2022, 24, 1576. [Google Scholar] [CrossRef] [PubMed]
- Malasse, A. Self-Organization as a New Paradigm in Evolutionary Biology: From Theory to Applied Cases in the Tree of Life; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Prigogine, I. From Being to Becoming: Time and Complexity in the Physical Sciences; W.H. Freeman and Co.: Totnes, UK, 1981. [Google Scholar]
- Stewart, J. Cognition = life: Implications for higher-level cognition. Behav. Process. 1996, 35, 311–326. [Google Scholar]
- Lyon, P.; Keijzer, F.; Arendt, D.; Levin, M. Reframing cognition: Getting down to biological basics. Phil. Trans. R. Soc. B 2021, 376, 20190750. [Google Scholar] [PubMed]
- Jablonka, E.; Lamb, M. Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. Revised Edition. Life and Mind: Philosophical Issues in Biology and Psychology; A Bradford Book; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Laland, K.N.; Uller, T.; Feldman, M.W.; Sterelny, K.; Müller, G.B.; Moczek, A.; Jablonka, E.; Odling-Smee, J. The extended evolutionary synthesis: Its structure, assumptions and predictions. Proc. R. Soc. B Biol. Sci. 2015, 282, 1–14. [Google Scholar] [CrossRef]
- Noble, D. The Music of Life: Biology Beyond the Genome; Oxford University Press: Oxford, UK, 2016; ISBN 0199228361. [Google Scholar]
- Ginsburg, S.; Jablonka, E. The Evolution of the Sensitive Soul; MIT Press: Cambridge, MA, USA, 2019; ISBN 9780262039307. [Google Scholar]
- Piccinini, G. Neurocognitive Mechanisms: Explaining Biological Cognition; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Levin, M.; Keijzer, F.; Lyon, P.; Arendt, D. Uncovering cognitive similarities and differences, conservation and innovation. Phil. Trans. R. Soc. B 2021, 376, 20200458. [Google Scholar] [CrossRef] [PubMed]
- Dodig-Crnkovic, G. Nature as a Network of Morphological Infocomputational Processes for Cognitive Agents. Eur. Phys. J. 2017, 226, 181–195. [Google Scholar] [CrossRef]
- Ng, W.-L.; Bassler, B.L. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 2009, 43, 197–222. [Google Scholar] [CrossRef]
- Schauder, S.; Bassler, B.L. The languages of bacteria. Genes Dev. 2001, 15, 1468–1480. [Google Scholar] [CrossRef]
- Waters, C.M.; Bassler, B.L. Quorum Sensing: Cell-to-Cell Communication in Bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar]
- Ben-Jacob, E. Social behavior of bacteria: From physics to complex organization. Eur. Phys. J. B 2008, 65, 315–322. [Google Scholar] [CrossRef]
- Diggle, S.P.; Griffin, A.S.; Campbell, G.S.; West, S.A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 2007, 450, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Gagliano, M.; Souza, G.M.; Trewavas, A. Plants are intelligent, here’s how. Ann. Bot. 2020, 125, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Noble, D. Dance to the Tune of Life: Biological Relativity; Cambridge University Press: Cambridge, UK, 2016; ISBN 9781316771488. [Google Scholar]
- Torday, J.; Miller, W. Four Domains: Cognition-Based Evolution BT-Cellular-Molecular Mechanisms in Epigenetic Evolutionary Biology; Springer International Publishing: Cham, Switzerland, 2020; pp. 103–112. ISBN 978-3-030-38133-2. [Google Scholar]
- Miller, W.B.; Torday, J.S. Four domains: The fundamental unicell and Post-Darwinian Cognition-Based Evolution. Prog. Biophys. Mol. Biol. 2018, 140, 49–73. [Google Scholar] [CrossRef] [PubMed]
- Torday, J.; Miller, W.B. Four domains: Cognition-based evolution. In Cellular-Molecular Mechanisms in Epigenetic Evolutionary Biology; Springer: Cham, Switzerland, 2020. [Google Scholar]
- McMillen, P.; Walker, S.I.; Levin, M. Information Theory as an Experimental Tool for Integrating Disparate Biophysical Signaling Modules. Int. J. Mol. Sci. 2022, 23, 9580. [Google Scholar] [CrossRef] [PubMed]
- Pradeu, T.; Vitanza, E. Immunology, self and nonself. In The Limits of the Self: Immunology and Biological Identity; Pradeu, T., Vitanza, E., Eds.; Oxford University Press: Oxford, UK, 2012; ISBN 9780199775286. [Google Scholar]
- Rozenberg, G.; Kari, L. The many facets of natural computing. Commun. ACM 2008, 51, 72–83. [Google Scholar] [CrossRef]
- Zuse, K. Calculating Space. Translation of “Rechnender Raum”; MIT Technical Translation: Cambridge, MA, USA, 1970. [Google Scholar]
- Fredkin, E. An Introduction to Digital Philosophy. Int. J. Theor. Phys. 2003, 42, 189–247. [Google Scholar] [CrossRef]
- Wolfram, S. A New Kind of Science; Wolfram Media: Champaign, IL, USA, 2002. [Google Scholar]
- Lloyd, S. Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos; Knopf: New York, NY, USA, 2006; ISBN 9781400040926. [Google Scholar]
- Zenil, H. A Computable Universe. Understanding Computation & Exploring Nature as Computation; World Scientific Publishing Company/Imperial College Press: Singapore, 2012. [Google Scholar]
- Chaitin, G. Building the World Out of Information and Computation: Is God a Programmer, Not a Mathematician? Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Hewitt, C. What is computation? Actor Model versus Turing’s Model. In A Computable Universe, Understanding Computation & Exploring Nature As Computation; Zenil, H., Ed.; World Scientific Publishing Company/Imperial College Press: Singapore, 2012; pp. 159–187. [Google Scholar]
- Hewitt, C. Actor Model for Discretionary, Adaptive Concurrency. 2010. Available online: https://dblp.uni-trier.de/rec/journals/corr/abs-1008-1459.html (accessed on 29 December 2022).
- Hewitt, C. Actor model of computation: Scalable robust information systems. arXiv 2010, arXiv:1008.1459. [Google Scholar]
- Kauffman, S. Investigations; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Dodig-Crnkovic, G. Information, computation, cognition. Agency-based hierarchies of levels. In Fundamental Issues of Artificial Intelligence. Synthese Library 377; Müller, V., Ed.; Springer International Publishing Switzerland: Cham, Switzerland, 2016; pp. 139–159. [Google Scholar]
- Deacon, T. Incomplete Nature. How Mind Emerged from Matter; W. W. Norton & Co.: New York, NY, USA, 2011. [Google Scholar]
- Salthe, S. Development (and evolution) of the universe. Found. Sci. 2010, 15, 357–367. [Google Scholar] [CrossRef]
- Scheutz, M. Computationalism New Directions; MIT Press: Cambridge, MA, USA, 2002; ISBN 9780262283106. [Google Scholar]
- Sloman, A. The irrelevance of turing machines to AI. In Computationalism—New Directions; MIT Press: Cambridge, MA, USA, 2002; pp. 87–127. [Google Scholar]
- Siegelmann, H.T. Turing on Super-Turing and Adaptivity. Prog. Biophys. Mol. Biol. 2013, 113, 117–126. [Google Scholar]
- Fields, C.; Levin, M. Scale-Free Biology: Integrating Evolutionary and Developmental Thinking. BioEssays 2020, 42, 1900228. [Google Scholar]
- Manicka, S.; Levin, M. Minimal Developmental Computation: A Causal Network Approach to Understand Morphogenetic Pattern Formation. Entropy 2022, 24, 107. [Google Scholar] [PubMed]
- Manicka, S.; Levin, M. The Cognitive Lens: A primer on conceptual tools for analysing information processing in developmental and regenerative morphogenesis. Philos. Trans. R. Soc. B 2019, 374, 20180369. [Google Scholar]
- Dodig-Crnkovic, G.; Burgin, M. Information and Computation; World Scientific: Singapore, 2011. [Google Scholar]
- Burgin, M.; Dodig-Crnkovic, G. The nature of computation and the development of computational models. In Proceedings of the Computability in Europe 2013 (CiE 2013) the Nature of Computation, Univ. of Milano-Bicocca, Milano, Italy, 1–5 July 2013. [Google Scholar]
- Burgin, M.; Dodig-Crnkovic, G. From the Closed Classical Algorithmic Universe to An Open World of Algorithmic Constellations; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7. [Google Scholar]
- Burgin, M.; Dodig-Crnkovic, G. Typologies of Computation and Computational Models. arXiv 2013, arXiv:1312.2447. [Google Scholar]
- Fields, C.; Levin, M. Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing Cognition in Diverse Embodiments. Entropy 2022, 24, 819. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, P.R. Bodily Processing: The Role of Morphological Computation. Entropy 2017, 19, 295. [Google Scholar] [CrossRef]
- Properzi, M. Bodily Processing: What Progress Has Been Made in Understanding the Embodiment of Computing Systems? Stud. Univ. Babeș-Bolyai Philos. 2021, 66, 181–190. [Google Scholar] [CrossRef]
- Bateson, G. Steps to an Ecology of Mind; The University of Chicago Press: London, UK, 1972; ISBN 9780226039053. [Google Scholar]
- Hewitt, C. What is commitment? Physical, organizational, and social. In Coordination, Organizations, Institutions, and Norms in Agent Systems II; Noriega, P., Vazquez-Salceda, J., Boella, G., Boissier, O., Dign, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 293–307. [Google Scholar]
- Chaitin, G. Epistemology as Information Theory: From Leibniz to Ω. In Computation, Information, Cognition—The Nexus and The Liminal; Dodig Crnkovic, G., Ed.; Cambridge Scholars Pub.: Newcastle, UK, 2007; pp. 2–17. ISBN 978-1-4438-0040-2. [Google Scholar]
- Dodig-Crnkovic, G. On the Foundations of Computing. Computing as the Fourth Great Domain of Science. Glob. Philos. 2023, 33, 1–12. [Google Scholar] [CrossRef]
- Landauer, R. The physical nature of information. Phys. Lett. A 1996, 217, 188–193. [Google Scholar]
- Kauffman, S. Molecular autonomous agents. Phil. Trans. R. Soc. A 2003, 361, 1089–1099. [Google Scholar] [CrossRef]
- Deacon, T. Shannon-Botzmann-Darwin: Redefining information. Part 1. Cogn. Semiot. 2007, 1, 123–148. [Google Scholar] [CrossRef]
- Goyal, P. Information Physics—Towards a New Conception of Physical Reality. Information 2012, 3, 567–594. [Google Scholar] [CrossRef]
- Chiribella, G.; D’Ariano, G.M.; Perinotti, P. Quantum Theory, Namely the Pure and Reversible Theory of Information. Entropy 2012, 14, 1877–1893. [Google Scholar]
- Dodig-Crnkovic, G. Computational Dynamics of Natural Information Morphology, Discretely Continuous. Philosophies 2017, 2, 23. [Google Scholar]
- Torday, J.S.; Miller, W.B. Biologic relativity: Who is the observer and what is observed? Prog. Biophys. Mol. Biol. 2016, 121, 29–34. [Google Scholar] [CrossRef]
- Abrahao, F.S.; Zenil, H. Emergence and algorithmic information dynamics of systems and observers. Phil. Trans. R. Soc. A 2022, 380, 20200429. [Google Scholar] [CrossRef]
- Levin, M.; Keijzer, F.; Lyon, P.; Arendt, D. Basal cognition: Multicellularity, neurons and the cognitive lens, Special issue, Part 2. Phil. Trans. R. Soc. B 2021, 376i, 20190750. [Google Scholar]
- Levin, M. Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochem. Biophys. Res. Commun. 2020; in press. [Google Scholar]
- Levin, M. The Computational Boundary of a “Self”: Developmental Bioelectricity Drives Multicellularity and Scale-Free Cognition. Front. Psychol. 2019, 10, 2688. [Google Scholar]
- Ehresmann, A.C. MENS, an Info-Computational Model for (Neuro-)cognitive Systems Capable of Creativity. Entropy 2012, 14, 1703–1716. [Google Scholar] [CrossRef]
- Ehresmann, A.C. A Mathematical Model for Info-computationalism. Constr. Found. 2014, 9, 235–237. [Google Scholar]
- Rozenberg, G.; Bäck, T.; Kok, J.N. Handbook of Natural Computing; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Pfeifer, R.; Gomez, G. Morphological computation-connecting brain, body, and environment. In Creating Brain-like Intelligence: From Basic Principles to Complex Intelligent Systems; Sendhoff, B., Sporns, O., Körner, E., Ritter, H., Doya, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 66–83. [Google Scholar]
- Miłkowski, M. Morphological Computation: Nothing but Physical Computation. Entropy 2018, 20, 942. [Google Scholar] [CrossRef]
- Kampis, G. Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information, and Complexity; Pergamon: Amsterdam, The Netherlands, 1991; Volume 6, ISBN 978-0-08-036979-2. [Google Scholar]
- Witzany, G. Life: The Communicative Structure. A New Philosophy of Biology; Libri Books on Demand: Norderstedt, Germany, 2000. [Google Scholar]
- Witzany, G.; Baluška, F. Turing: A formal clash of codes. Nature 2012, 483, 541. [Google Scholar] [PubMed]
- Damasio, A.R. The Feeling of What Happens: Body and Emotion in the Making of Consciousness; Harcourt Brace and Co: San Diego, CA, USA, 1999; ISBN1 0156010755. ISBN2 9780156010757. [Google Scholar]
- Thagard, P. Hot Thought: Mechanisms and Applications of Emotional Cognition; MIT Press: Cambridge MA, USA, 2006; ISBN 0262701243. [Google Scholar]
- Watanabe, S.; Hofman, M.A.; Toru, S. Evolution of the Brain, Cognition, and Emotion in Vertebrates; Springer: Japan, Tokyo, 2017. [Google Scholar]
- Lowe, R.; Almér, A.; Dodig-Crnkovic, G. Predictive Regulation in Affective and Adaptive Behaviour: An Allostatic-Cybernetics Perspective. Adv. Res. Biol. Inspired Cogn. Archit. 2017, 8, 148–176. [Google Scholar]
- Dodig-Crnkovic, G. Natural Morphological Computation as Foundation of Learning to Learn in Humans, Other Living Organisms, and Intelligent Machines. Philosophies 2020, 5, 17. [Google Scholar] [CrossRef]
- Miłkowski, M. Explaining the Computational Mind; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Ramsey, W.M. Representation Reconsidered; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-511-59795-4. [Google Scholar]
- Godfrey-Smith, P. Triviality arguments against functionalism. Philos. Stud. 2008, 145, 273–295. [Google Scholar] [CrossRef]
- Piccinini, G.; Anderson, N.G. Ontic Pancomputationalism. In Physical Perspectives on Computation, Computational Perspectives on Physics; Cuffaro, M.E., Fletcher, S.C., Eds.; Cambridge University Press: Cambridge, UK, 2018; pp. 23–38. [Google Scholar]
- Turing, A. On Computable Numbers, with an Application to the Entscheidungsproblem. Proc. London Math. Soc. 1937, s2–42, 230–265. [Google Scholar] [CrossRef]
- Shanker, S. Wittgenstein’s Remarks on the Foundations of AI; Routledge: London, UK, 2006; ISBN 978-0-415-09794-9. [Google Scholar]
- Miłkowski, M. Is computationalism trivial? In Computation, Information, Cognition—The Nexus and the Liminal; Dodig-Crnkovic, G., Stuart, S., Eds.; Cambridge Scholars Press: Newcastle, UK, 2007; pp. 236–246. [Google Scholar]
- Martin, C.B.; Heil, J. The Ontological Turn. Midwest Stud. Philos. 1999, 23, 34–60. [Google Scholar] [CrossRef]
- Wiener, N. Cybernetics: Or Control and Communication in the Animal and the Machine; MIT Press: Cambridge, MA, USA, 1948. [Google Scholar]
- Ladyman, J.; Ross, D.; Spurrett, D.; Collier, J. Everything Must Go: Metaphysics Naturalised; Clarendon Press: Oxford, UK, 2007; ISBN 9780199276196. [Google Scholar]
- Nowak, L. The Structure of Idealization; Springer: Dordrecht, Switzerland, 1980; ISBN 978-90-481-8356-2. [Google Scholar]
- Strevens, M. Depth: An Account of Scientific Explanation; Harvard University Press: Cambridge, MA, USA, 2008; ISBN 978-0-674-03183-8. [Google Scholar]
- Dennett, D.C. Lovely and Suspect Qualities. Philos. Issues 1991, 1, 37–43. [Google Scholar] [CrossRef]
- Chalmers, D. A Computational Foundation for the Study of Cognition. J. Cogn. Sci. 2011, 12, 323–357. [Google Scholar]
- Miłkowski, M. Computational Theory of Mind. Internet Encycl. Philos. 2013. [Google Scholar] [CrossRef]
- Woodward, J. Data and phenomena. Synthese 1989, 79, 393–472. [Google Scholar] [CrossRef]
- Lloyd, S. Computational capacity of the universe. Phys. Rev. Lett. 2002, 88, 1–17. [Google Scholar] [CrossRef]
- Piccinini, G. Physical Computation: A Mechanistic Account; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Fresco, N. Physical Computation and Cognitive Science; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Garson, J. The Functional Sense of Mechanism. Philos. Sci. 2013, 80, 317–333. [Google Scholar] [CrossRef]
- Dewhurst, J. Computing Mechanisms Without Proper Functions. Minds Mach. 2018, 28, 569–588. [Google Scholar] [CrossRef]
- Millikan, R.G. Biofunctions: Two paradigms. In Functions: New Essays in the Philosophy of Psychology and Biology; Ariew, A., Cummins, R., Perlman, M., Eds.; Clarendon Press: New York, NY, USA, 2002. [Google Scholar]
- Cummins, R. Functional Analysis. J. Philos. 1975, 72, 741–765. [Google Scholar]
- Krohs, U. Functions as based on a concept of general design. Synthese 2009, 166, 69–89. [Google Scholar] [CrossRef]
- Chrisley, R. Transparent computationalism. In New Computationalism: Conceptus-Studien 14; Scheutz, M., Ed.; Academia Verlag: Sankt Augustin, Germany, 2000; pp. 105–121. [Google Scholar]
- Miłkowski, M. From Computer Metaphor to Computational Modeling: The Evolution of Computationalism. Minds Mach. 2018, 28, 515–541. [Google Scholar] [CrossRef]
- Newell, A. Physical symbol systems. Cogn. Sci. A Multidiscip. J. 1980, 4, 135–183. [Google Scholar] [CrossRef]
- Miłkowski, M. Objections to Computationalism: A Survey. Rocz. Filoz. 2018, 66, 57–75. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G. Info-computational Constructivism and Cognition. Constr. Found. 2014, 9, 223–231. [Google Scholar]
- Dodig-Crnkovic, G. Why we need info-computational constructivism. Constr. Found. 2014, 9, 246–255. [Google Scholar]
- Dodig-Crnkovic, G. Floridi’s informational structural realist basis for info-computational modelling of cognizing agents. J. Exp. Theor. Artif. Intell. 2015, 27, 13–22. [Google Scholar] [CrossRef]
- von Foerster, H. Understanding Understanding: Essays on Cybernetics and Cognition; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Dodig-Crnkovic, G. Information and Energy/Matter Special Issue. Available online: https://www.mdpi.com/journal/information/special_issues/matter (accessed on 28 January 2023).
- Zenil, H.; Dodig-Crnkovic, G. Physics of Information Special Issue of the journal Information. Available online: https://www.mdpi.com/journal/information/special_issues/physics-information (accessed on 28 January 2023).
- Sloman, A.; Chrisley, R. Virtual machines and consciousness. J. Conscious. Stud. 2003, 10, 113–172. [Google Scholar]
- Sloman, A. Meta-Morphogenesis. Available online: http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-morphogenesis.html (accessed on 28 January 2023).
- Fields, C.; Bischof, J.; Levin, M. Morphological Coordination: A Common Ancestral Function Unifying Neural and Non-Neural Signaling. Physiology 2020, 35, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Baluška, F.; Levin, M. On having no head: Cognition throughout biological systems. Front. Psychol. 2016, 7, 902. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dodig-Crnkovic, G.; Miłkowski, M. Discussion on the Relationship between Computation, Information, Cognition, and Their Embodiment. Entropy 2023, 25, 310. https://doi.org/10.3390/e25020310
Dodig-Crnkovic G, Miłkowski M. Discussion on the Relationship between Computation, Information, Cognition, and Their Embodiment. Entropy. 2023; 25(2):310. https://doi.org/10.3390/e25020310
Chicago/Turabian StyleDodig-Crnkovic, Gordana, and Marcin Miłkowski. 2023. "Discussion on the Relationship between Computation, Information, Cognition, and Their Embodiment" Entropy 25, no. 2: 310. https://doi.org/10.3390/e25020310