Finite-Time H∞ Control for Time-Delay Markovian Jump Systems with Partially Unknown Transition Rate via General Controllers
Abstract
:1. Introduction
2. Problem Statement and Preliminaries
3. Main Results
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Langton, R. Stability and Control of Aircraft Systems: Introduction to Classical Feedback Control; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Liu, G.; Ma, L.; Liu, J. Handbook of Chemistry and Chemical Material Property Data; Chemical Industry Press: Beijing, China, 2002. [Google Scholar]
- Zivanovic, M.; Vukobratovic, M. Multi-Arm Cooperating Robots: Dynamics and Control, 1st ed.; Spring: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Fridman, E.; Shaked, U. Parameter dependent stability and stabilization of uncertain time-delay systems. IEEE Trans. Autom. Control. 2003, 48, 861–866. [Google Scholar] [CrossRef]
- Yakoubi, K.; Chitour, Y. Linear systems subject to input saturation and time delay: Global asymptotic stabilization. IEEE Trans. Autom. Control. 2007, 52, 874–879. [Google Scholar] [CrossRef]
- Hai, L.; Antsaklis, P. Stability and stabilizability of switched linear systems: A survey of recent results. IEEE Trans. Autom. Control 2009, 54, 308–322. [Google Scholar] [CrossRef]
- Mancilla-Aguilar, J.; Haimovich, H.; Garcia, R. Global stability results for switched systems based on weak Lyapunov functions. IEEE Trans. Autom. Control 2017, 62, 2764–2777. [Google Scholar] [CrossRef]
- Dorato, P. Short time stability in linear time-varying systems. Proc. IRE Int. Conv. Rec. 1961, 4, 83–87. [Google Scholar]
- Kamenkov, G. On stability of motion over a fnite interval of time. J. Appl. Math. Mech. 1953, 17, 529–540. [Google Scholar]
- Amato, F.; Ariola, M.; Dorato, P. Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 2001, 37, 1459–1463. [Google Scholar] [CrossRef]
- Amato, F.; Ariola, M.; Cosentino, C. Finite-time stabilization via dynamic output feedback. Automatica 2005, 42, 337–342. [Google Scholar] [CrossRef]
- Amato, F.; Ariola, M.; Cosentino, C.; De Tommasi, G. Input-output finite time stabilization of linear systems. Automatica 2010, 46, 1558–1562. [Google Scholar] [CrossRef]
- Amato, F.; Ambrosino, R.; Ariola, M.; De Tommasi, G.; Pironti, A. On the finite-time boundedness of linear systems. Automatica 2019, 107, 454–466. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Q.; Li, Y. Finite-time guaranteed cost control for uncertain mean-field stochastic systems. J. Frankl. Inst. 2020, 357, 2813–2829. [Google Scholar] [CrossRef]
- Tartaglione, G.; Ariola, M.; Cosention, C.; De Tommasi, G.; Pironti, A.; Amato, F. Annular finite-time stability analysis and synthesis of stochastic linear time-varying systems. Int. J. Control. 2019, 94, 2252–2263. [Google Scholar] [CrossRef]
- Tartaglione, G.; Ariola, M.; Amato, F. Conditions for annular finite-time stability of Itô stochastic linear time-varying syetems with Markov switching. IET Control. Theory Appl. 2019, 14, 626–633. [Google Scholar] [CrossRef]
- Bai, Y.; Sun, H.; Wu, A. Finite-time stability and stabilization of Markovian jump linear systems subject to incomplete transition descriptions. Int. J. Control. Autom. Syst. 2021, 19, 2999–3012. [Google Scholar] [CrossRef]
- Gu, Y.; Shen, M.; Ren, Y.; Liu, H. H∞ finite-time control of unknown uncertain systems with actuator failure. Appl. Math. Comput. 2020, 383, 125375. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Li, Y. Finite-time stability analysis fordiscrete-time stochastic nonlinear systems with time-varying delay. J. Shandong Univ. Sci. Technol. (Nat. Sci.) 2021, 40, 110–120. [Google Scholar] [CrossRef]
- Shen, H.; Li, F.; Yan, H.; Zhang, C.; Yan, H. Finite-time event-triggered H∞ control for T-S fuzzy Markov systems. IEEE Trans. Fuzzy Syst. 2018, 26, 3122–3135. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Shen, Y. Finite-time bounded stabilisation for linear systems with finite-time H2-gain constraint. IET Control. Theory Appl. 2020, 14, 1266–1275. [Google Scholar] [CrossRef]
- Li, M.; Sun, L.; Yang, R. Finite-time H∞ control for a class of discrete-time nonlinear singular systems. J. Frankl. Inst. 2018, 355, 5384–5393. [Google Scholar] [CrossRef]
- Xiang, Z.; Qiao, C.; Mahmoud, M. Finite-time analysis and H∞ control for switched stochastic systems. J. Frankl. Inst. 2011, 349, 915–927. [Google Scholar] [CrossRef]
- Zhuang, J.; Liu, X.; Li, Y. Event-triggered annular finite-time H∞ filtering for stochastic network systems. J. Frankl. Inst. 2022, 359, 11208–11228. [Google Scholar] [CrossRef]
- De la Sen, M.; Ibeas, A.; Nistal, R. On the entropy of events under eventually global inflated or deflated probability constraints. Application to the supervision of epidemic models under vaccination controls. Entropy 2020, 22, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, W.; Liu, X. H_index for discrete-time stochastic systems with Markovian jump and multiplicative noise. Automatica 2018, 90, 286–293. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Li, Y. H_index for continuous-time stochastic systems with Markov jump and multiplicative noise. Automatica 2019, 105, 167–178. [Google Scholar] [CrossRef]
- Zhuang, J.; Liu, X.; Li, Y. H_index for Itô stochastic systems with Possion jump. J. Frankl. Inst. 2021, 358, 9929–9950. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.; Zhang, Q.; Yang, C. Finite-time stability and stabilization of stochastic delayed jump systems via general controllers. J. Frankl. Inst. 2016, 354, 938–966. [Google Scholar] [CrossRef]
- Yan, Z.; Ju, H.; Zhang, W. Finite-time guaranteed cost control for Itô stochastic Markovian jump systems with incomplete transition rates. Int. J. Robust Nonlinear Control. 2016, 27, 66–83. [Google Scholar] [CrossRef]
- Yan, G.; Zhang, W.; Zhang, G. Finite-time stability and stabilization of Itô stochastic systems with Markovian switching: Mode-dependent parameter approach. IEEE Trans. Autom. Control 2015, 60, 2428–2433. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Yao, C.; Li, Y. Finite-time guaranteed cost control for Markovian jump systems with time-varying delays. Mathematics 2022, 10, 2028. [Google Scholar] [CrossRef]
- Liu, Z.; Miao, S.; Fan, Z.; Han, J. Markovian switching model and non-linear DC modulation control of AC/DC power system. IET Gener. Transm. Distrib. 2017, 11, 2654–2663. [Google Scholar] [CrossRef]
- Liu, X.; Zhuang, J.; Li, Y. H∞ filtering for Markovian jump linear systems with uncertain transition probabilities. Int. J. Control. Autom. Syst. 2021, 19, 2500–2510. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, G. Control of a group of systems whose communication channels are assigned by a semi-Markov process. Int. J. Syst. Sci. 2019, 50, 2306–2315. [Google Scholar] [CrossRef]
- Qi, W.; Gao, X. Finite-time H∞ control for stochastic time-delayed Markovian switching systems with partly known transition rates and nonlinearity. Int. J. Syst. Sci. 2015, 47, 500–508. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, H.; Zhong, S. Finite-time H∞ filtering for discrete-time Markovian jump systems with partly unknown transition probabilities. J. Frankl. Inst. 2013, 91, 1020–1028. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, L.; Jiang, B. Finite-time H∞ control of stochastic singular systems with partly known transition rates via an optimization algorithm. Int. J. Control. Autom. Syst. 2019, 17, 1462–1472. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, K.; Charalambous, T. Multi-agent consensus with heterogenous time-varying input and communication delays in digraphs. Automatica 2022, 135, 109950. [Google Scholar] [CrossRef]
- Pourdehi, S.; Kavimaghaee, P. Stability analysis and design of model predictive reset control for nonlinear time-delay systems with application to a two-stage chemical reactor system. J. Process Control 2018, 71, 103–115. [Google Scholar] [CrossRef]
- Truong, D. Using causal machine learning for predicting the risk of flight delays in air transportation. J. Air Transp. Manag. 2021, 91, 101993. [Google Scholar] [CrossRef]
- Li, X.; Li, P. Stability of time-delay systems with impulsive control involving stabilizing delays. Automatica 2020, 124, 109336. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Wang, Y. Stabilization and optimal control of discrete-time systems with multiplicative noise and multiple input delays. Syst. Control. Lett. 2021, 147, 104833. [Google Scholar] [CrossRef]
- Zong, G.; Wang, R.; Zheng, W. Finite-time H∞ control for discrete-time switched nonlinear systems with time delay. Int. J. Robust Nonlinear Control. 2015, 25, 914–936. [Google Scholar] [CrossRef]
- Qiu, L.; He, L.; Dai, L.; Fang, C.; Chen, Z.; Pan, J.; Zhang, B.; Xu, Y.; Chen, C.R. Networked control strategy of dual linear switched reluctance motors based time delay tracking system. ISA Trans. 2021, 129, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, W.; Li, Y. Finite-time H∞ control of stochastic time-delay Markovian jump systems. J. Shandong Univ. Sci. Technol. (Natural Sci.) 2022, 41, 75–84. [Google Scholar] [CrossRef]
- Yan, Z.; Song, Y.; Park, J. Finite-time stability and stabilization for stochastic Markov jump systems with mode-dependent time delays. ISA Trans. 2017, 68, 141–149. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Zhao, X.; Yang, B. Stochastic finite-time stabilization for discrete-time positive Markov jump time-delay systems. J. Frankl. Inst. 2022, 359, 84–103. [Google Scholar] [CrossRef]
- Wang, G.; Li, Z.; Zhang, Q.; Yang, C. Robust finite-time stability and stabilization of uncertain Markovian jump systems with time-varying delay. Appl. Math. Comput. 2017, 293, 377–393. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Wang, J.; Li, Y. Robust finite-time stability for uncertain discrete-time stochastic nonlinear systems with time-varying delay. Entropy 2022, 24, 828. [Google Scholar] [CrossRef]
- Tian, G. Finite-time H∞ control for stochastic Markovian jump systems with time-varying delay and generally uncertain transition rates. Int. J. Syst. Sci. 2021, 52, 1–14. [Google Scholar] [CrossRef]
- Oksendal, B. Stochastic Differential Equations: An Introduction with Applications, 6th ed.; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Bellman, R.; Cooke, K. Differential-Difference Equations; Academic Press: New York, NY, USA, 1963. [Google Scholar]
- Ouellette, D. Schur Complements and Statistics. Linear Algebra Appl. 1981, 36, 187–295. [Google Scholar] [CrossRef] [Green Version]
- Vrabel, R. On local asymptotic stabilization of the nonlinear systems with time-varying perturbations by state-feedback control. Int. J. Gen. Syst. 2018, 48, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Tenreiro Machado, J. Fractional derivatives and negative probabilities. Commun. Nonlinear Sci. Numer. Simul. 2019, 79, 104913. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Guo, X.; Liu, W.; Li, Y. Finite-Time H∞ Control for Time-Delay Markovian Jump Systems with Partially Unknown Transition Rate via General Controllers. Entropy 2023, 25, 402. https://doi.org/10.3390/e25030402
Liu X, Guo X, Liu W, Li Y. Finite-Time H∞ Control for Time-Delay Markovian Jump Systems with Partially Unknown Transition Rate via General Controllers. Entropy. 2023; 25(3):402. https://doi.org/10.3390/e25030402
Chicago/Turabian StyleLiu, Xikui, Xinye Guo, Wencheng Liu, and Yan Li. 2023. "Finite-Time H∞ Control for Time-Delay Markovian Jump Systems with Partially Unknown Transition Rate via General Controllers" Entropy 25, no. 3: 402. https://doi.org/10.3390/e25030402