Complexity in Geophysical Time Series of Strain/Fracture at Laboratory and Large Dam Scales: Review
Abstract
:1. Introduction
2. Materials and Methods
Complexity Measures for Interpretation of Geophysical Monitoring Data
3. Complexity in Acoustic Time Series during Laboratory Stick–Slip
Periodically Forced Stick–Slip
4. Results
4.1. Nonlinear Dynamics of Stick–Slip at Mechanical Forcing
4.2. Nonlinear Dynamics of Stick–Slip at Electromagnetic Forcing
4.3. Complexity in Reservoir Induced Tilts/Strains/Seismicity
4.3.1. Enguri Dam System
4.3.2. The Process of Tilt/Strain Complexity Adaptation to Initial Reservoir Loading
4.4. The Tilt/Strain Complexity in the Whole Period of Observations
4.4.1. Strains in the Dam Foundation
4.4.2. Nonlinear Dynamics of the Regular Dam Foundation Strains
4.4.3. The Phenomenon of Reservoir-Induced Seismicity Synchronization (RISS)
5. The Effect of Weak Forcing of Different Origin on the Dynamics of Seismic Events
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chelidze, T. Percolation Model of Fracture of Solids. Dokl. AN SSSR 1979, 226, 51–54. [Google Scholar]
- Chelidze, T. Model of Solid’s Fracture. Solid State Phys. 1980, 22, 2865–2866. [Google Scholar]
- Chelidze, T. Percolation and Fracture. Phys. Earth Planet. Inter. 1982, 28, 93–101. [Google Scholar] [CrossRef]
- Allegre, C.; Le Mouell, J.; Provost, A. Scaling rules in rock fracture and possible implications for earthquake prediction. Nature 1982, 297, 47–49. [Google Scholar] [CrossRef]
- Chelidze, T. Percolation theory as a tool for imitation of fracture process in rocks. Pure Appl. Geophys. 1986, 124, 731–748. [Google Scholar] [CrossRef]
- Rundle, J.B.; Turcotte, D.L.; Klein, W. Geocomplexity and the Physics of Earthquakes; Geophysical Monograph 120: American Geophysical Union: Washington, DC, USA, 2000. [Google Scholar]
- Meiers, R. Encyclopedia of Complexity and System Science; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Turcotte, D. Fractals and Chaos in Geology and Geophysics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Sarlis, N.V.; Skordas, E.S.; Mintzelas, A.; Papadopoulou, K.A. Micro-scale, mid-scale, and macro-scale in global seismicity identified by empirical mode decomposition and their multifractal characteristics. Sci. Rep. 2018, 8, 9206. [Google Scholar] [CrossRef] [Green Version]
- Skordas, E.S.; Christopoulos, S.R.G.; Sarlis, N.V. Detrended fluctuation analysis of seismicity and order parameter fluctuations before the M7.1 Ridgecrest earthquake. Nat. Hazards 2020, 100, 697–711. [Google Scholar] [CrossRef]
- Varotsos, P.K.; Perez-Oregon, J.; Skordas, E.S.; Sarlis, N.V. Estimating the Epicenter of an Impending Strong Earthquake by Combining the Seismicity Order Parameter Variability Analysis with Earthquake Networks and Nowcasting: Application in the Eastern Mediterranean. Appl. Sci. 2021, 11, 10093. [Google Scholar] [CrossRef]
- Li, Q. Dynamical Systems and Machine Learning; Summer School, Peking University: Beijing, China, 2020. [Google Scholar]
- Rosenblum, M.; Pikovsky, A.; Kurths, J. Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 1996, 76, 1804–1808. [Google Scholar] [CrossRef] [Green Version]
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization: Universal Concept in Nonlinear Science; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Tsigkri-DeSmedt, N.D.; Sarlis, N.V.; Provata, A. Shooting solitaries due to small-world connectivity in Leaky Integrate-and-Fire networks. Chaos 2021, 31, 083129. [Google Scholar] [CrossRef]
- Guyer, R.; Johnson, P. Nonlinear Mesoscopic Elasticity; Wiley-VCH: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar] [CrossRef]
- Takens, F. Detecting Strange Attractors in Turbulence. In Dynamical Systems and Turbulence; Rand, D.A., Young, L.-S., Eds.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1981; Volume 898, pp. 366–381. [Google Scholar] [CrossRef]
- Webber, C.L.; Marwan, N. Recurrence Quantification Analysis: Theory and Best Practices; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Cover, T.M.; Joy, A.T. Elements of Information Theory, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Lempel, A.; Ziv, J. On the Complexity of Finite Sequences. IEEE Trans. Inf. Theory 1976, 22, 75–81. [Google Scholar] [CrossRef]
- Hu, J.; Gao, J. Analysis of Biomedical Signals by the Lempel-Ziv Complexity: The Effect of Finite Data Size. IEEE Trans Biomed Eng. 2006, 53, 2606–2609. [Google Scholar] [CrossRef] [PubMed]
- Vautard, R.; Yiou, P.; Ghi, M. Singular-spectrum analysis: A toolkit for short, noisy, chaotic signals. Phys. D 1992, 58, 95–126. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, G.J. Mahalanobis distance. Resonance 1999, 6, 20–26. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, S. Perspective: Self-organized Criticality and Earthquake Predictability: A long standing question in the light of natural time analysis. EPL 2020, 132, 29001. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, S. Order Parameter and Entropy of Seismicity in Natural Time before Major Earthquakes: Recent Results. Geosciences 2022, 12, 225. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, S. Natural Time Analysis: The New View of Time. Precursory Seismic Electric Signals, Earthquakes and Other Complex Time-Series; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Arnold, V. Notes on the perturbation theory for the problems of Mathieu type. Russ. Mat. Surv. 1983, 38, 215–233. [Google Scholar] [CrossRef]
- Peng, C.-K.; Buldyrev, S.V.; Goldberger, A.L.; Havlin, S.; Simons, M.; Stanley, H.E. Finite-size effects on long-range correlations: Implications for analyzing DNA sequences. Phys. Rev. E 1993, 47, 3730–3733. [Google Scholar] [CrossRef]
- Broomhead, D.; King, G. On the qualitative analysis of experimental dynamical systems. In Nonlinear Phenomena and Chaos; Sarkar, S., Hilger, A., Eds.; Adam Hilger Ltd.: Bristol, UK, 1986; pp. 113–144. [Google Scholar]
- Telesca, L.; Matcharasvili, T.; Chelidze, T.; Zhukova, N. Relationship between seismicity and water level in the Enguri high dam area (Georgia) using the singular spectrum analysis. Nat. Hazards Earth Syst. Sci. 2012, 12, 2479–2485. [Google Scholar] [CrossRef] [Green Version]
- Schuster, A. On lunar and solar periodicities of earthquakes. Proc. R. Soc. Lond. 1897, 61, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Loukidis, A.; Triantis, D.; Stavrakas, L. Non-Extensive Statistical Analysis of Acoustic Emissions Recorded in Marble and Cement Mortar Specimens under Mechanical Load until Fracture. Entropy 2020, 22, 1115. [Google Scholar] [CrossRef] [PubMed]
- Skordas, E.S.; Sarlis, N.V.; Varotsos, P.A. Precursory variations of Tsallis non-extensive statistical mechanics entropic index associated with the M9 Tohoku earthquake in 2011. Eur. Phys. J. Spec. Top. 2020, 229, 851–859. [Google Scholar] [CrossRef]
- Sigalotti, L.D.G.; Ramírez-Rojas, A.; Vargas, C.A. Tsallis q-Statistics in Seismology. Entropy 2023, 25, 408. [Google Scholar] [CrossRef]
- Brace, W.E.; Byerlee, I.D. Stick slip as a mechanism for earthquakes. Science 1966, 153, 990–992. [Google Scholar] [CrossRef] [Green Version]
- Ruina, A. Slip instability and state variable friction laws. J. Geophys. Res. 1983, 88, 10359–10370. [Google Scholar] [CrossRef]
- Ben-David, O.; Rubinstein, S.M.; Fineberg, J. Slip-stick and the evolution of frictional strength. Nature 2010, 463, 76–79. [Google Scholar] [CrossRef]
- Johnson, P.A.; Ferdowsi, B.; Kaproth, B.M.; Scuderi, M.; Griffa, M.; Carmeliet, J.; Guyer, R.A.; Le Bas, P.-Y.; Trugman, D.T.; Marone, C. Acoustic emission and microslip precursors to stick-slip failure in sheared granular material. Geophys. Res. Lett. 2013, 40, 5627–5631. [Google Scholar] [CrossRef] [Green Version]
- Loukidis, A.; Perez-Oregon, J.; Pasiou, E.D.; Kourkoulis, N.V.; Sarlis, N.V.; Triantis, D. Natural time analysis of acoustic emissions before fracture: Results compatible with the Bak-Tang-Wiesenfeld model. EPL 2022, 139, 12004. [Google Scholar] [CrossRef]
- Foulger, G.R.; Wilson, M.P.; Gluyas, J.G.; Julian, B.R.; Davies, R.J. Global Review of Human-Induced Earthquakes. Earth Sci. Rev. 2018, 178, 438–514. [Google Scholar] [CrossRef] [Green Version]
- Bogomolov, L.; Zakupin, A.; Sychev, V. Electrical Action on the Earth Crust and Variations of Weak Seismicity; Lambert Academic Publishing: Saarbrucken, Germany, 2011; p. 408. (In Russian) [Google Scholar]
- Pampillón, P.; Santillán, D.; Mosquera, J.C.; Cueto-Felgueroso, L. Geomechanical Constraints on Hydro-Seismicity: Tidal Forcing and Reservoir Operation. Water 2020, 12, 2724. [Google Scholar] [CrossRef]
- Chelidze, T.; Matcharashvili, T.; Lursmananshvili, O.; Varamashvili, N.; Zhukova, N.; Meparidze, E. Triggering and Synchronization of Stick-Slip: Experiments on Spring-Slider System. In Synchronization and Triggering: From Fracture to Earthquake Processes; Rubeis, V., Czechowski, Z., Teisseyre, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 123–164. [Google Scholar] [CrossRef]
- Chelidze, T.; Matcharashvili, T. Triggering and Synchronization of Seismicity: Laboratory and Field Data—A Review. In Earthquakes—Triggers, Environmental Impact and Potential Hazards; Konstantinou, K., Ed.; Nova Science Pub.: Hauppauge, NY, USA, 2013; pp. 165–231. [Google Scholar]
- Hubbert, M.; Rubbey, W. Role of fluid pressure in mechanics of overthrust faulting. Bull. Geol. Soc. Am. 1959, 70, 115–166. [Google Scholar] [CrossRef]
- Zbilut, J.P.; Webber, C.L. Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 1992, 171, 199–203. [Google Scholar] [CrossRef]
- Marwan, N. Encounters with Neighborhood. Ph.D. Thesis, University of Potsdam, Potsdam, Germany, 2003. [Google Scholar]
- Chelidze, T.; Matcharashvili, T.; Varamashvili, N.; Mepharidze, E.; Tephnadze, D.; Chelidze, Z. Complexity and synchronization analysis in natural and dynamically forced stick-slip: A review. In Complexity of Seismic Time Series; Chelidze, T., Vallianatos, F., Telesca, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 276–321. [Google Scholar] [CrossRef]
- Chelidze, T.; Matcharashvili, T.; Abashidze, V.; Tsaguria, T.; Dovgal, N.; Zhukova, N. Complex dynamics of fault zone deformation under large dam at various time scales. Geomech. Geophys. Geo-Energy Geo-Resour. 2019, 5, 437–455. [Google Scholar] [CrossRef]
- Chelidze, T.; Matcharashvili, T.; Abashidze, V.; Dovgal, N.; Mepharidze, E.; Chelidze, L. Time Series Analysis of Fault Strain Accumulation around Large Dam: The Case of Enguri Dam, Greater Caucasus. In Building Knowledge for Geohazard Assessment and Management in the Caucasus and Other Orogenic Regions; Bonali, F., Mariotto, F., Tsereteli, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 185–204. [Google Scholar] [CrossRef]
- Sprott, J. Chaos and Time-Series Analysis; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Matcharashvili, T.; Chelidze, T.; Abashidze, V.; Zhukova, N.; Meparidze, E. Changes in Dynamics of Seismic Processes around Enguri High Dam Reservoir Induced by Periodic Variation of Water Level. In Synchronization and Triggering: From Fracture to Earthquake Processes; De Rubeis, V., Czechowski, Z., Teisseyre, R., Eds.; Geoplanet: Earth and Planetary Sciences; Springer: Berlin/Heidelberg, Germany, 2010; Volume 1, pp. 273–286. [Google Scholar] [CrossRef]
- Chelidze, T.; Matcharashvili, T.; Mepharidze, E.; Mebonia, L.; Kalabegashvili, M.; Dovgal, N. Potential of Nonlinear Dynam-ics Tools in the Real-Time Monitoring of Large Dam: The Case of High Enguri Arc Dam. In Special Topics in Dam Engineering; Tosun., H., Ed.; Publishing House IntechOpen: London, UK, 2022; pp. 105–114. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, D.; Liu, Y. Deformation Prediction System of Concrete Dam Based on IVM-SCSO-RF. Water 2022, 14, 3739. [Google Scholar] [CrossRef]
- Javakhishvili, Z. Seismic hazard and seismicity of Enguri Hydroelectric station area. In Geodynamical Studies of Large Dams; Balavadze, B., Sulakauri, B., Eds.; Bakur Sulakauri Publishing House: Tbilisi, Georgia, 2002; pp. 88–96. [Google Scholar]
- Tsereteli, N.; Danciu, L.; Varazanashvili, O.; Sesetyan, K.; Qajaia, L.; Sharia, T.; Svanadze, D.; Khvedelidze, I. The 2020 National Seismic Hazard Model for Georgia. In Building Knowledge for Geohazard Assessment and Management in the Caucasus and Other Orogenic Regions; Bonali, F.L., Mariotto, F.P., Tsereteli, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 131–168. [Google Scholar]
- Karamzadeh, N.; Gaucher, E.; Tsereteli, N.; Tuggushi, N.; Shubladze, T.; Ghudushauri, L.; Bogelspacher, F.; Frietsch, M.; Rietbrock, A. Dams and Induced Seismicity. In Proceedings of the Conference, DAMAST—Seismic Monitoring, Report on the Final Workshop. Karlsruhe, Germany, 25–27 July 2022; Karlsruhe Institute of Technology: Karlsruhe, Germany, 2022. [Google Scholar]
- Matcharashvili, T.; Czechowski, Z.; Chelidze, T.; Zhukova, N. Changes in the dynamics of seismic process observed in the fixed time windows; case study for southern California 1980–2020. Phys. Earth Planet. Inter. 2021, 319, 106783. [Google Scholar] [CrossRef]
- Telesca, L.; Matcharashvili, T.; Chelidze, T.; Zhukova, N.; Javakhishvili, Z. Investigating the dynamical features of the time distribution of the reservoir-induced seismicity in Enguri area (Georgia). Nat. Hazards 2015, 77, 117–125. [Google Scholar] [CrossRef]
- Telesca, L.; Chelidze, T. Visibility graph analysis of seismicity around Enguri high arch dam, Caucasus. Bull. Seis. Soc. Am. 2018, 108, 3141–3147. [Google Scholar] [CrossRef]
- Chelidze, T.; Matcharashvili, T. Dynamic Patterns in Seismology. In Recurrence Quantification Analysis; Webber, C., Marwan, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 291–334. [Google Scholar] [CrossRef]
- Hill, D.; Prejean, S. Dynamic Triggering. In Earthquake Seismology; Kanamori, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 257–293. [Google Scholar]
- Nikolaev, A.V. Induced Seismicity; Nauka: Moscow, Russia, 1994; p. 220. (In Russian) [Google Scholar]
- Métivier, L.; de Viron, O.; Conrad, C.P.; Renault, S.; Diament, M.; Patau, G. Evidence of earthquake triggering by the solid earth tides. Earth Planet. Sci. Lett. 2009, 278, 370–375. [Google Scholar] [CrossRef]
- Vidale, J.; Agnew, D.C.; Johnston, M.J.S.; Oppenheimer, D.H. Absence of Earthquake correlation with Earth tides. J. Geophys. Res. 1998, 103, 24567–24572. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chelidze, T.; Matcharashvili, T.; Mepharidze, E.; Dovgal, N. Complexity in Geophysical Time Series of Strain/Fracture at Laboratory and Large Dam Scales: Review. Entropy 2023, 25, 467. https://doi.org/10.3390/e25030467
Chelidze T, Matcharashvili T, Mepharidze E, Dovgal N. Complexity in Geophysical Time Series of Strain/Fracture at Laboratory and Large Dam Scales: Review. Entropy. 2023; 25(3):467. https://doi.org/10.3390/e25030467
Chicago/Turabian StyleChelidze, Tamaz, Teimuraz Matcharashvili, Ekaterine Mepharidze, and Nadezhda Dovgal. 2023. "Complexity in Geophysical Time Series of Strain/Fracture at Laboratory and Large Dam Scales: Review" Entropy 25, no. 3: 467. https://doi.org/10.3390/e25030467