Identifying Vital Nodes in Hypergraphs Based on Von Neumann Entropy
Abstract
:1. Introduction
2. Preliminaries
2.1. Hypergraph and -Line Graph
2.2. Von Neumann Entropy
3. Method
3.1. Baseline Method
3.2. Identifying Vital Nodes in Hypergraphs
4. Method Evaluation
4.1. Dataset
4.2. Influence
4.3. Correlation
4.4. Robustness
4.5. Monotonicity
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Barabási, A.L. Network science. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120375. [Google Scholar] [CrossRef]
- Kong, X.; Shi, Y.; Yu, S.; Liu, J.; Xia, F. Academic social networks: Modeling, analysis, mining and applications. J. Netw. Comput. Appl. 2019, 132, 86–103. [Google Scholar]
- Veraart, L.A.M. Distress and default contagion in financial networks. Math. Financ. 2020, 30, 705–737. [Google Scholar] [CrossRef]
- Yang, Y.; Qiao, S.; Sani, O.G.; Sedillo, J.I.; Ferrentino, B.; Pesaran, B.; Shanechi, M.M. Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation. Nat. Biomed. Eng. 2021, 5, 324–345. [Google Scholar] [CrossRef]
- Serdar, M.Z.; Koç, M.; Al-Ghamdi, S.G. Urban Transportation Networks Resilience: Indicators, Disturbances, and Assessment Methods. Sustain. Cities Soc. 2021, 76, 103452. [Google Scholar] [CrossRef]
- Catalyurek, U.V.; Boman, E.G.; Devine, K.D.; Bozdağ, D.; Heaphy, R.T.; Riesen, L.A. A repartitioning hypergraph model for dynamic load balancing. J. Parallel Distrib. Comput. 2009, 69, 711–724. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Liu, C. A hypergraph model of social tagging networks. J. Stat. Mech. Theory Exp. 2010, 2010, P10005. [Google Scholar] [CrossRef]
- Guo, J.L.; Zhu, X.Y.; Suo, Q.; Forrest, J. Non-uniform evolving hypergraphs and weighted evolving hypergraphs. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Kook, Y.; Ko, J.; Shin, K. Evolution of real-world hypergraphs: Patterns and models without oracles. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; pp. 272–281. [Google Scholar]
- Hu, F.; Ma, L.; Zhan, X.-X.; Zhou, Y.; Liu, C.; Zhao, H.; Zhang, Z.-K. The aging effect in evolving scientific citation networks. Scientometrics 2021, 126, 4297–4309. [Google Scholar] [CrossRef]
- Landry, N.W.; Restrepo, J.G. The effect of heterogeneity on hypergraph contagion models. Chaos: Interdiscip. J. Nonlinear Sci. 2020, 30, 103117. [Google Scholar] [CrossRef]
- Adhikari, S.; Restrepo, J.G.; Skardal, P.S. Synchronization of phase oscillators on complex hypergraphs. Chaos: Interdiscip. J. Nonlinear Sci. 2023, 33, 033116. [Google Scholar] [CrossRef]
- Costantini, L.; Sciarra, C.; Ridolfi, L.; Laio, F. Measuring node centrality when local and global measures overlap. Phys. Rev. E 2022, 105, 044317. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Sun, S. Identification of node centrality based on Laplacian energy of networks. Phys. A Stat. Mech. Its Appl. 2023, 609, 128353. [Google Scholar] [CrossRef]
- Xie, X.; Zhan, X.; Zhang, Z.; Liu, C. Vital node identification in hypergraphs via gravity model. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 013104. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Zhan, X.-X.; Liu, C.; Zhang, Z.-K. An efficient adaptive degree-based heuristic algorithm for influence maximization in hypergraphs. Inf. Process. Manag. 2023, 60, 103161. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Deng, Y. Evidential identification of influential nodes in network of networks. Chaos Solitons Fractals 2018, 117, 283–296. [Google Scholar] [CrossRef]
- Chaharborj, S.S.; Nabi, K.N.; Feng, K.L.; Chaharborj, S.S.; Phang, P.S. Controlling COVID-19 transmission with isolation of influential nodes. Chaos Solitons Fractals 2022, 159, 112035. [Google Scholar] [CrossRef]
- Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J.-G.; Petri, G. Networks beyond pairwise interactions: Structure and dynamics. Phys. Rep. 2020, 874, 1–92. [Google Scholar] [CrossRef]
- Aksoy, S.G.; Joslyn, C.; Marrero, C.O.; Praggastis, B.; Purvine, E. Hypernetwork science via high-order hypergraph walks. EPJ Data Sci. 2020, 9, 1–34. [Google Scholar] [CrossRef]
- Yoshida, Y. Almost linear-time algorithms for adaptive betweenness centrality using hypergraph sketches. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 1416–1425. [Google Scholar]
- Kovalenko, K.; Romance, M.; Vasilyeva, E.; Aleja, D.; Criado, R.; Musatov, D.; Raigorodskii, A.; Flores, J.; Samoylenko, I.; Alfaro-Bittner, K.; et al. Vector centrality in hypergraphs. Chaos Solitons Fractals 2022, 162, 112397. [Google Scholar] [CrossRef]
- Chen, C.; Rajapakse, I. Tensor entropy for uniform hypergraphs. IEEE Trans. Netw. Sci. Eng. 2020, 7, 2889–2900. [Google Scholar] [CrossRef]
- Bloch, I.; Bretto, A. A new entropy for hypergraphs. In Proceedings of Discrete Geometry for Computer Imagery: 21st IAPR International Conference, DGCI 2019, Marne-la-Vallée, France, 26–28 March 2019; Proceedings 21; Springer International Publishing: New York, NY, USA, 2019; pp. 143–154. [Google Scholar]
- Tuğal, İ.; Zeydin, P. Centrality with Entropy in Hypergraphs. Rahva Tek. Ve Sos. Araştırmalar Derg. 2021, 1, 84–91. [Google Scholar]
- Berge, C. Graphs and Hypergraphs; American Elsevier Publishing Company: New York, NY, USA, 1973; p. 389. [Google Scholar]
- Berge, C. Hypergraphs: Combinatorics of Finite Sets; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Liu, X.T.; Firoz, J.; Lumsdaine, A.; Joslyn, C.; Aksoy, S.; Praggastis, B.; Gebremedhin, A.H. Parallel algorithms for efficient computation of high-order line graphs of hypergraphs. In Proceedings of the 2021 IEEE 28th International Conference on High Performance Computing, Data, and Ana-lytics (HiPC), Bengaluru, India, 17–20 December 2021; pp. 312–321. [Google Scholar]
- Nielsen, M.A.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Minello, G.; Rossi, L.; Torsello, A. On the von Neumann entropy of graphs. J. Complex Networks 2018, 7, 491–514. [Google Scholar] [CrossRef]
- Sarkar, R.; Dutta, S.; Banerjee, S.; Panigrahi, P.K. Phase squeezing of quantum hypergraph states. J. Phys. B At. Mol. Opt. Phys. 2021, 54, 135501. [Google Scholar] [CrossRef]
- Severini, S.; De Beaudrap, N.; Giovannetti, V.; Wilson, R. Interpreting the von Neumann entropy of graph Laplacians, and coentropic graphs. A Panor. Math. Pure Appl. 2016, 658, 1079–1187. [Google Scholar] [CrossRef]
- Estrada, E.; Rodríguez-Velázquez, J.A. Subgraph centrality and clustering in complex hyper-networks. Phys. A Stat. Mech. its Appl. 2006, 364, 581–594. [Google Scholar] [CrossRef]
- Zhang, H.; Zhong, S.; Deng, Y.; Cheong, K.H. LFIC: Identifying influential nodes in complex networks by local fuzzy in-formation centrality. IEEE Trans. Fuzzy Syst. 2021, 30, 3284–3296. [Google Scholar] [CrossRef]
- Wang, J.; Wilson, R.C.; Hancock, E.R. Network edge entropy decomposition with spin statistics. Pattern Recognit. 2021, 118, 108040. [Google Scholar] [CrossRef]
- Batagelj, V.; Mrvar, A. Pajek Datasets. 2006. Available online: https://vlado.fmf.uni-lj.si/pub/networks/data/ (accessed on 9 May 2023).
- Batagelj, V.; Mrvar, A. Some analyses of Erdos collaboration graph. Soc. Networks 2000, 22, 173–186. [Google Scholar] [CrossRef]
- Amburg, I.; Veldt, N.; Benson, A.R. Diverse and experienced group discovery via hypergraph clustering. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), Alexandria, VA, USA, 28–30 April 2022; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2022; pp. 145–153. [Google Scholar]
- Ni, J.; Li, J.; McAuley, J. Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 188–197. [Google Scholar]
- Kunegis, J. Konect: The koblenz network collection. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 1343–1350. [Google Scholar]
- Suo, Q.; Guo, J.L.; Shen, A.Z. Information spreading dynamics in hypernetworks. Phys. A Stat. Mech. Its Appl. 2018, 495, 475–487. [Google Scholar] [CrossRef]
- Zhang, Z.; Mei, X.; Jiang, H.; Luo, X.; Xia, Y. Dynamical analysis of Hyper-SIR rumor spreading model. Appl. Math. Comput. 2023, 446, 127887. [Google Scholar] [CrossRef]
- de Arruda, G.F.; Petri, G.; Moreno, Y. Social contagion models on hypergraphs. Phys. Rev. Res. 2020, 2, 023032. [Google Scholar] [CrossRef]
- St-Onge, G.; Iacopini, I.; Latora, V.; Barrat, A.; Petri, G.; Allard, A.; Hébert-Dufresne, L. Influential groups for seeding and sustaining nonlinear contagion in heterogeneous hypergraphs. Commun. Phys. 2022, 5, 25. [Google Scholar] [CrossRef]
- Jhun, B. Effective epidemic containment strategy in hypergraphs. Phys. Rev. Res. 2021, 3, 033282. [Google Scholar] [CrossRef]
- Criado, R.; Romance, M.; Vela-Pérez, M. Hyperstructures, a new approach to complex systems. Int. J. Bifurc. Chaos 2010, 20, 877–883. [Google Scholar] [CrossRef]
- Behague, N.C.; Bonato, A.; Huggan, M.A.; Malik, R.; Marbach, T.G. The iterated local transitivity model for hypergraphs. Discret. Appl. Math. 2023, 337, 106–119. [Google Scholar] [CrossRef]
- Li, H.J.; Wang, L.; Bu, Z.; Cao, J.; Shi, Y. Measuring the network vulnerability based on markov criticality. ACM Trans. Knowl. Discov. Data (TKDD) 2021, 16, 1–24. [Google Scholar] [CrossRef]
- Wang, X.; Slamu, W.; Guo, W.; Cao, J.; Shi, Y. A novel semi local measure of identifying influential nodes in complex networks. Chaos Solitons Fractals 2022, 158, 112037. [Google Scholar]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Xu, X.; Zhu, C.; Wang, Q.; Zhu, X.; Zhou, Y. Identifying vital nodes in complex networks by adjacency information entropy. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Wang, M.; Li, W.; Guo, Y.; Peng, X.; Li, Y. Identifying influential spreaders in complex networks based on improved k-shell method. Phys. A Stat. Mech. its Appl. 2020, 554, 124229. [Google Scholar] [CrossRef]
- Wu, Y.H.; Tian, K.; Li, M.D.; Hu, F. Important node recognition in hypernetworks nased on node propagation entropy. J. Comput. Eng. Appl. 2023, 60, 1–11. Available online: http://kns.cnki.net/kcms/detail/11.2127.TP.20230224.1846.020.html (accessed on 6 June 2023).
- Zhou, L.N.; Chang, X.; Hu, F. Using adjacent structure entropy to determine vital nodes of hypernetwork. J. Comput. Eng. Appl. 2022, 58, 76–82. [Google Scholar]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
Hypergraph | ||||||
---|---|---|---|---|---|---|
Erdos971 | 437 | 337 | 36 | 23.2258 | 0.7757 | 0.5268 |
Restaurant | 565 | 601 | 43 | 79.7522 | 0.5355 | 0.5503 |
Geometry | 580 | 1193 | 230 | 164.7931 | 0.8166 | 0.6367 |
Roget | 1010 | 997 | 23 | 32.2713 | 0.4587 | 0.4079 |
Music-blues | 1106 | 694 | 83 | 167.8807 | 0.6178 | 0.5551 |
Film-ratings | 2064 | 1399 | 151 | 122.7054 | 0.7997 | 0.5043 |
Method | Erdos971 | Restaurant | Geometry | Roget | Music-Blues | Film-Ratings |
---|---|---|---|---|---|---|
HE | 0.6520 | 0.8190 | 0.8873 | 0.8164 | 0.8201 | 0.6222 |
PE | 0.9625 | 0.9871 | 0.9861 | 0.9918 | 0.9868 | 0.8354 |
ASE | 0.9923 | 0.9979 | 0.9897 | 0.9946 | 0.9909 | 0.9102 |
semi-SAVC | 0.9460 | 0.9722 | 0.9579 | 0.9734 | 0.8827 | 0.6578 |
HVC | 0.9929 | 0.9986 | 0.9947 | 0.9986 | 0.9965 | 0.8239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, F.; Tian, K.; Zhang, Z.-K. Identifying Vital Nodes in Hypergraphs Based on Von Neumann Entropy. Entropy 2023, 25, 1263. https://doi.org/10.3390/e25091263
Hu F, Tian K, Zhang Z-K. Identifying Vital Nodes in Hypergraphs Based on Von Neumann Entropy. Entropy. 2023; 25(9):1263. https://doi.org/10.3390/e25091263
Chicago/Turabian StyleHu, Feng, Kuo Tian, and Zi-Ke Zhang. 2023. "Identifying Vital Nodes in Hypergraphs Based on Von Neumann Entropy" Entropy 25, no. 9: 1263. https://doi.org/10.3390/e25091263
APA StyleHu, F., Tian, K., & Zhang, Z.-K. (2023). Identifying Vital Nodes in Hypergraphs Based on Von Neumann Entropy. Entropy, 25(9), 1263. https://doi.org/10.3390/e25091263