Non-Hermitian Floquet Topological Matter—A Review
Abstract
:1. Introduction
2. Background
2.1. Floquet Theorem
2.2. Floquet Eigenvalue Equation
2.3. Floquet Effective Hamiltonian and High-Frequency Expansion
2.4. Adiabatic Perturbation Theory
2.5. Symmetry and Topological Characterization
2.6. Dynamical Indicators
2.6.1. Dynamic Winding Number (DWN)
2.6.2. Mean Chiral Displacement (MCD)
2.7. Localization Transition and Mobility Edge
3. Non-Hermitian Floquet Phases of Matter
3.1. Non-Hermitian Floquet Exceptional Topology
3.2. Non-Hermitian Floquet Topological Insulators
3.2.1. First-Order Topological Phase
3.2.2. Second-Order Topological Phase
3.2.3. qth-Root Topological Phase
3.3. Non-Hermitian Floquet Topological Superconductors
3.4. Non-Hermitian Floquet Quasicrystals
4. Conclusions and Outlook
Funding
Conflicts of Interest
References
- Dittrich, T.; Hänggi, P.; Ingold, G.-L.; Kramer, B.; Schön, G.; Zwerger, W. Quantum Transport and Dissipation; Wiley-VCH: Weinheim, Germany, 1998. [Google Scholar]
- Stöckmann, H.-J. Quantum Chaos: An Introduction; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Tannor, D.J. Introduction to Quantum Mechanics: A Time-Dependent Perspective; University Science Books: Melville, NY, USA, 2007. [Google Scholar]
- Joachain, C.J.; Kylstra, N.J.; Potvliege, R.M. Atoms in Intense Laser Fields; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Haake, F.; Gnutzmann, S.; Ku, M. Quantum Signatures of Chaos; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Reichl, L. The Transition to Chaos; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Rabi, I.I. Space Quantization in a Gyrating Magnetic Field. Phys. Rev. 1937, 51, 652–654. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Atom-Photon Interactions: Basic Processes and Applications; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Loudon, R. The Quantum Theory of Light, 3rd ed.; Oxford Science: Oxford, UK, 2000. [Google Scholar]
- Oreg, J.; Hioe, F.T.; Eberly, J.H. Adiabatic following in multilevel systems. Phys. Rev. A 1984, 29, 690–697. [Google Scholar] [CrossRef]
- Gaubatz, U.; Rudecki, P.; Schiemann, S.; Bergmann, K. Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results. J. Chem. Phys. 1990, 92, 5363. [Google Scholar] [CrossRef]
- Vitanov, N.V.; Rangelov, A.A.; Shore, B.W.; Bergmann, K. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 2017, 89, 015006. [Google Scholar] [CrossRef]
- Casati, G.; Ford, J. (Eds.) Stochastic Behaviour in Classical and Quantum Hamiltonian Systems; Springer: Berlin, Germany, 1979. [Google Scholar]
- Fishman, S.; Grempel, D.R.; Prang, R.E. Chaos, Quantum Recurrences, and Anderson Localization. Phys. Rev. Lett. 1982, 49, 509. [Google Scholar] [CrossRef]
- Moore, F.L.; Robinson, J.C.; Bharucha, C.; Williams, P.E.; Raizen, M.G. Observation of Dynamical Localization in Atomic Momentum Transfer: A New Testing Ground for Quantum Chaos. Phys. Rev. Lett. 1994, 73, 2974–2977. [Google Scholar] [CrossRef] [PubMed]
- Thouless, D.J. Quantization of particle transport. Phys. Rev. B 1983, 27, 6083–6087. [Google Scholar] [CrossRef]
- Niu, Q.; Thouless, D.J. Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. A Math. Gen. 1984, 17, 2453–2462. [Google Scholar] [CrossRef]
- Citro, R.; Aidelsburger, M. Thouless pumping and topology. Nat. Rev. Phys. 2023, 5, 87–101. [Google Scholar] [CrossRef]
- Khemani, V.; Lazarides, A.; Moessner, R.; Sondhi, S.L. Phase Structure of Driven Quantum Systems. Phys. Rev. Lett. 2016, 116, 250401. [Google Scholar] [CrossRef]
- Else, D.V.; Bauer, B.; Nayak, C. Floquet Time Crystals. Phys. Rev. Lett. 2016, 117, 090402. [Google Scholar] [CrossRef] [PubMed]
- Yao, N.Y.; Potter, A.C.; Potirniche, I.-D.; Vishwanath, A. Discrete Time Crystals: Rigidity, Criticality, and Realizations. Phys. Rev. Lett. 2017, 118, 030401. [Google Scholar] [CrossRef] [PubMed]
- Oka, T.; Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 2009, 79, 081406. [Google Scholar] [CrossRef]
- Lindner, N.H.; Refael, G.; Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 2011, 7, 490–495. [Google Scholar] [CrossRef]
- Ho, D.Y.H.; Gong, J. Quantized Adiabatic Transport In Momentum Space. Phys. Rev. Lett. 2012, 109, 010601. [Google Scholar] [CrossRef]
- Leboeuf, P.; Kurchan, J.; Feingold, M.; Arovas, D.P. Topological aspects of quantum chaos. Chaos Interdiscip. J. Nonlinear Sci. 1992, 2, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tian, C. Planck’s Quantum-Driven Integer Quantum Hall Effect in Chaos. Phys. Rev. Lett. 2014, 113, 216802. [Google Scholar] [CrossRef]
- Tian, C.; Chen, Y.; Wang, J. Emergence of integer quantum Hall effect from chaos. Phys. Rev. B 2016, 93, 075403. [Google Scholar] [CrossRef]
- Casati, G.; Molinari, L. “Quantum Chaos” with Time-Periodic Hamiltonians. Prog. Theor. Phys. Suppl. 1989, 98, 287–322. [Google Scholar] [CrossRef]
- Grifoni, M.; Hänggi, P. Driven quantum tunneling. Phys. Rep. 1998, 304, 229–354. [Google Scholar] [CrossRef]
- Kohler, S.; Lehmann, J.; Hänggi, P. Driven quantum transport on the nanoscale. Phys. Rep. 2005, 406, 379–443. [Google Scholar] [CrossRef]
- Kitagawa, T. Topological phenomena in quantum walks: Elementary introduction to the physics of topological phases. Quantum Inf. Process. 2012, 11, 1107–1148. [Google Scholar] [CrossRef]
- Cayssol, J.; Dóra, B.; Simon, F.; Moessner, R. Floquet topological insulators. Phys. Status Solidi RRL 2013, 7, 101–108. [Google Scholar] [CrossRef]
- Bukov, M.; D’Alessio, L.; Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: From dynamical stabilization to Floquet engineering. Adv. Phys. 2015, 64, 139–226. [Google Scholar] [CrossRef]
- Holthaus, M. Floquet engineering with quasienergy bands of periodically driven optical lattices. J. Phys. B At. Mol. Opt. Phys. 2015, 49, 013001. [Google Scholar] [CrossRef]
- Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 2017, 89, 011004. [Google Scholar] [CrossRef]
- Weinberg, P.; Bukov, M.; D’alessio, L.; Polkovnikov, A.; Vajna, S.; Kolodrubetz, M. Adiabatic perturbation theory and geometry of periodically-driven systems. Phys. Rep. 2017, 688, 3. [Google Scholar] [CrossRef]
- Mori, T.; Ikeda, T.N.; Kaminishi, E.; Ueda, M. Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 112001. [Google Scholar] [CrossRef]
- Oka, T.; Kitamura, S. Floquet Engineering of Quantum Materials. Annu. Rev. Condens. Matter Phys. 2019, 10, 387–408. [Google Scholar] [CrossRef]
- Rudner, M.S.; Lindner, N.H. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2020, 2, 229–244. [Google Scholar] [CrossRef]
- Rudner, M.S.; Lindner, N.H. The Floquet Engineer’s Handbook. arXiv 2020, arXiv:2003.08252. [Google Scholar]
- Harper, F.; Roy, R.; Rudner, M.S.; Sondhi, S. Topology and Broken Symmetry in Floquet Systems. Annu. Rev. Condens. Matter Phys. 2020, 11, 345–368. [Google Scholar] [CrossRef]
- De la Torre, A.; Kennes, D.M.; Claassen, M.; Gerber, S.; McIver, J.W.; Sentef, M.A. Colloquium: Non-thermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 2021, 93, 041002. [Google Scholar] [CrossRef]
- Weitenberg, C.; Simonet, J. Tailoring quantum gases by Floquet engineering. Nat. Phys. 2021, 17, 1342–1348. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Bhattacharjee, S.; Sen, D. Driven quantum many-body systems and out-of-equilibrium topology. J. Phys. Condens. Matter 2021, 33, 393001. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Sen, D.; Sengupta, K. Analytic approaches to periodically driven closed quantum systems: Methods and applications. J. Phys. Condens. Matter 2021, 33, 443003. [Google Scholar] [CrossRef]
- Rodriguez-Vega, M.; Vogl, M.; Fiete, G.A. Low-frequency and Moiré-Floquet engineering: A review. Ann. Phys. 2021, 435, 168434. [Google Scholar] [CrossRef]
- Bloch, J.; Cavalleri, A.; Galitski, V.; Hafezi, M.; Rubio, A. Strongly correlated electron–photon systems. Nature 2022, 606, 41–48. [Google Scholar] [CrossRef]
- Zhu, W.; Gong, J.; Bomantara, R.W. Topological pi modes and beyond. Sci. Bull. 2022, 67, 2145–2148. [Google Scholar] [CrossRef]
- Galiffi, E.; Tirole, R.; Yin, S.; Li, H.; Vezzoli, S.; Huidobro, P.A.; Silveirinha, M.G.; Sapienza, R.; Alù, A.; Pendry, J.B. Photonics of time-varying media. Adv. Photon 2022, 4, 014002. [Google Scholar] [CrossRef]
- Rodriguez-Vega, M.; Vergniory, M.G.; Fiete, G.A. Quantum materials out of equilibrium. Phys. Today 2022, 75, 42–47. [Google Scholar] [CrossRef]
- Yin, S.; Galiffi, E.; Alù, A. Floquet metamaterials. eLight 2022, 2, 8. [Google Scholar] [CrossRef]
- Bao, C.; Tang, P.; Sun, D.; Zhou, S. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 2021, 4, 33–48. [Google Scholar] [CrossRef]
- Haldar, A.; Das, A. Statistical mechanics of Floquet quantum matter: Exact and emergent conservation laws. J. Phys. Condens. Matter 2022, 34, 234001. [Google Scholar] [CrossRef] [PubMed]
- Mori, T. Floquet States in Open Quantum Systems. Annu. Rev. Condens. Matter Phys. 2023, 14, 35–56. [Google Scholar] [CrossRef]
- Ho, W.W.; Mori, T.; Abanin, D.A.; Torre, E.G.D. Quantum and classical Floquet prethermalization. Ann. Phys. 2023, 454, 169297. [Google Scholar] [CrossRef]
- Tsuji, N. Floquet States. arXiv 2023, arXiv:2301.12676. [Google Scholar]
- Sacha, K.; Zakrzewski, J. Time crystals: A review. Rep. Prog. Phys. 2017, 81, 016401. [Google Scholar] [CrossRef]
- Khemani, V.; Moessner, R.; Sondhi, S.L. A Brief History of Time Crystals. arXiv 2019, arXiv:1910.10745. [Google Scholar]
- Else, D.V.; Monroe, C.; Nayak, C.; Yao, N.Y. Discrete Time Crystals. Annu. Rev. Condens. Matter Phys. 2020, 11, 467–499. [Google Scholar] [CrossRef]
- Guo, L.; Liang, P. Condensed matter physics in time crystals. New J. Phys. 2020, 22, 075003. [Google Scholar] [CrossRef]
- Rahav, S.; Gilary, I.; Fishman, S. Effective Hamiltonians for periodically driven systems. Phys. Rev. A 2003, 68, 013820. [Google Scholar] [CrossRef]
- Goldman, N.; Dalibard, J. Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields. Phys. Rev. X 2014, 4, 031027. [Google Scholar] [CrossRef]
- Eckardt, A.; Anisimovas, E. High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective. New J. Phys. 2015, 17, 093039. [Google Scholar] [CrossRef]
- Mikami, T.; Kitamura, S.; Yasuda, K.; Tsuji, N.; Oka, T.; Aoki, H. Brillouin-Wigner theory for high-frequency expansion in periodically driven systems: Application to Floquet topological insulators. Phys. Rev. B 2016, 93, 144307. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, C.; Gong, J. Floquet semimetal with Floquet-band holonomy. Phys. Rev. B 2016, 94, 075443. [Google Scholar] [CrossRef]
- Upreti, L.K.; Evain, C.; Randoux, S.; Suret, P.; Amo, A.; Delplace, P. Topological Swing of Bloch Oscillations in Quantum Walks. Phys. Rev. Lett. 2020, 125, 186804. [Google Scholar] [CrossRef]
- AAdiyatullin, F.; Upreti, L.K.; Lechevalier, C.; Evain, C.; Copie, F.; Suret, P.; Randoux, S.; Delplace, P.; Amo, A. Topological Properties of FloquetWinding Bands in a Photonic Lattice. Phys. Rev. Lett. 2023, 130, 056901. [Google Scholar] [CrossRef]
- Jiang, L.; Kitagawa, T.; Alicea, J.; Akhmerov, A.R.; Pekker, D.; Refael, G.; Cirac, J.I.; Demler, E.; Lukin, M.D.; Zoller, P. Majorana Fermions in Equilibrium and in Driven Cold-Atom Quantum Wires. Phys. Rev. Lett. 2011, 106, 220402. [Google Scholar] [CrossRef]
- Asbóth, J.K.; Obuse, H. Bulk-boundary correspondence for chiral symmetric quantum walks. Phys. Rev. B 2013, 88, 121406. [Google Scholar] [CrossRef]
- Ho, D.Y.H.; Gong, J. Topological effects in chiral symmetric driven systems. Phys. Rev. B 2014, 90, 195419. [Google Scholar] [CrossRef]
- Cheng, Q.; Pan, Y.; Wang, H.; Zhang, C.; Yu, D.; Gover, A.; Zhang, H.; Li, T.; Zhou, L.; Zhu, S. Observation of Anomalous pi Modes in Photonic Floquet Engineering. Phys. Rev. Lett. 2019, 122, 173901. [Google Scholar] [CrossRef] [PubMed]
- Rudner, M.S.; Lindner, N.H.; Berg, E.; Levin, M. Anomalous Edge States and the Bulk-Edge Correspondence for Periodically Driven Two-Dimensional Systems. Phys. Rev. X 2013, 3, 031005. [Google Scholar] [CrossRef]
- Lababidi, M.; Satija, I.I.; Zhao, E. Counter-propagating Edge Modes and Topological Phases of a Kicked Quantum Hall System. Phys. Rev. Lett. 2014, 112, 026805. [Google Scholar] [CrossRef]
- Titum, P.; Berg, E.; Rudner, M.S.; Refael, G.; Lindner, N.H. Anomalous Floquet-Anderson Insulator as a Nonadiabatic Quantized Charge Pump. Phys. Rev. X 2016, 6, 021013. [Google Scholar] [CrossRef]
- Tong, Q.-J.; An, J.-H.; Gong, J.; Luo, H.-G.; Oh, C.H. Generating many Majorana modes via periodic driving: A superconductor model. Phys. Rev. B 2013, 87, 201109. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, H.; Ho, D.Y.; Gong, J. Aspects of Floquet bands and topological phase transitions in a continuously driven superlattice. Eur. Phys. J. B 2014, 87, 204 . [Google Scholar] [CrossRef]
- Xiong, T.-S.; Gong, J.; An, J.-H. Towards large-Chern-number topological phases by periodic quenching. Phys. Rev. B 2016, 93, 184306. [Google Scholar] [CrossRef]
- Zhou, L.; Gong, J. Floquet topological phases in a spin-1/2 double kicked rotor. Phys. Rev. A 2018, 97, 063603. [Google Scholar] [CrossRef]
- Zhou, L.; Gong, J. Recipe for creating an arbitrary number of Floquet chiral edge states. Phys. Rev. B 2018, 97, 245430. [Google Scholar] [CrossRef]
- Bomantara, R.W.; Zhou, L.; Pan, J.; Gong, J. Coupled-wire construction of static and Floquet second-order topological insulators. Phys. Rev. B 2019, 99, 045441. [Google Scholar] [CrossRef]
- Zhou, L.; Du, Q. Floquet topological phases with fourfold-degenerate edge modes in a driven spin-1/2 Creutz ladder. Phys. Rev. A 2020, 101, 033607. [Google Scholar] [CrossRef]
- Wu, H.; Wu, S.; Zhou, L. Floquet topological superconductors with many Majorana edge modes: Topological invariants, entanglement spectrum and bulk-edge correspondence. New J. Phys. 2023, 25, 083042. [Google Scholar] [CrossRef]
- Nathan, F.; Rudner, M.S. Topological singularities and the general classification of Floquet–Bloch systems. New J. Phys. 2015, 17, 125014. [Google Scholar] [CrossRef]
- Potter, A.C.; Morimoto, T.; Vishwanath, A. Classification of Interacting Topological Floquet Phases in One Dimension. Phys. Rev. X 2016, 6, 041001. [Google Scholar] [CrossRef]
- Roy, R.; Harper, F. Periodic table for Floquet topological insulators. Phys. Rev. B 2017, 96, 155118. [Google Scholar] [CrossRef]
- Yao, S.; Yan, Z.; Wang, Z. Topological invariants of Floquet systems: General formulation, special properties, and Floquet topological defects. Phys. Rev. B 2017, 96, 195303. [Google Scholar] [CrossRef]
- Kitagawa, T.; Broome, M.A.; Fedrizzi, A.; Rudner, M.S.; Berg, E.; Kassal, I.; Aspuru-Guzik, A.; Demler, E.; White, A.G. Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 2012, 3, 882. [Google Scholar] [CrossRef]
- Rechtsman, M.C.; Zeuner, J.M.; Plotnik, Y.; Lumer, Y.; Podolsky, D.; Dreisow, F.; Nolte, S.; Segev, M.; Szameit, A. Photonic Floquet topological insulators. Nature 2013, 496, 196–200. [Google Scholar] [CrossRef]
- Wang, Y.H.; Steinberg, H.; Jarillo-Herrero, P.; Gedik, N. Observation of Floquet-Bloch States on the Surface of a Topological Insulator. Science 2013, 342, 453–457. [Google Scholar] [CrossRef]
- Jotzu, G.; Messer, M.; Desbuquois, R.; Lebrat, M.; Uehlinger, T.; Greif, D.; Esslinger, T. Experimental realization of the topological Haldane model with ultracold fermions. Nature 2014, 515, 237. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Pillay, J.C.; Wu, K.; Pasek, M.; Shum, P.P.; Chong, Y.D. Measurement of a Topological Edge Invariant in a Microwave Network. Phys. Rev. X 2015, 5, 011012. [Google Scholar] [CrossRef]
- Maczewsky, L.J.; Zeuner, J.M.; Nolte, S.; Szameit, A. Observation of photonic anomalous Floquet topological insulators. Nat. Commun. 2017, 8, 13756. [Google Scholar] [CrossRef] [PubMed]
- Asteria, L.; Tran, D.T.; Ozawa, T.; Tarnowski, M.; Rem, B.S.; Fläschner, N.; Sengstock, K.; Goldman, N.; Weitenberg, C. Measuring quantized circular dichroism in ultracold topological matter. Nat. Phys. 2019, 15, 449–454. [Google Scholar] [CrossRef]
- Wintersperger, K.; Braun, C.; Ünal, F.N.; Eckardt, A.; Di Liberto, M.; Goldman, N.; Bloch, I.; Aidelsburger, M. Realization of an anomalous Floquet topological system with ultracold atoms. Nat. Phys. 2020, 16, 1058–1063. [Google Scholar] [CrossRef]
- McIver, J.W.; Schulte, B.; Stein, F.-U.; Matsuyama, T.; Jotzu, G.; Meier, G.; Cavalleri, A. Light-induced anomalous Hall effect in graphene. Nat. Phys. 2019, 16, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Zimmerling, T.J.; Ren, Y.; Perron, D.; Van, V. Realization of Anomalous Floquet Insulators in Strongly Coupled Nanophotonic Lattices. Phys. Rev. Lett. 2020, 124, 253601. [Google Scholar] [CrossRef]
- Chen, B.; Li, S.; Hou, X.; Ge, F.; Zhou, F.; Qian, P.; Mei, F.; Jia, S.; Xu, N.; Shen, H. Digital quantum simulation of Floquet topological phases with a solid-state quantum simulator. Photon. Res. 2021, 9, 81. [Google Scholar] [CrossRef]
- Yang, K.; Xu, S.; Zhou, L.; Zhao, Z.; Xie, T.; Ding, Z.; Ma, W.; Gong, J.; Shi, F.; Du, J. Observation of Floquet topological phases with large Chern numbers. Phys. Rev. B 2022, 106, 184106. [Google Scholar] [CrossRef]
- Cheng, Z.; Bomantara, R.W.; Xue, H.; Zhu, W.; Gong, J.; Zhang, B. Observation of pi/2 Modes in an Acoustic Floquet System. Phys. Rev. Lett. 2022, 129, 254301. [Google Scholar] [CrossRef]
- Zhu, W.; Xue, H.; Gong, J.; Chong, Y.; Zhang, B. Time-periodic corner states from Floquet higher-order topology. Nat. Commun. 2022, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Bao, C.; Fan, B.; Zhou, H.; Gao, Q.; Zhong, H.; Lin, T.; Liu, H.; Yu, P.; Tang, P.; et al. Pseudo-spinselective Floquet band engineering in black phosphorus. Nature 2023, 614, 75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Y.; Yi, C.-R.; Zhang, L.; Jiao, R.-H.; Shi, K.-Y.; Yuan, H.; Zhang, W.; Liu, X.-J.; Chen, S.; Pan, J.-W. Tuning Anomalous Floquet Topological Bands with Ultracold Atoms. Phys. Rev. Lett. 2023, 130, 043201. [Google Scholar] [CrossRef] [PubMed]
- Bomantara, R.W.; Gong, J. Simulation of Non-Abelian Braiding in Majorana Time Crystals. Phys. Rev. Lett. 2018, 120, 230405. [Google Scholar] [CrossRef] [PubMed]
- Bomantara, R.W.; Gong, J. Quantum computation via Floquet topological edge modes. Phys. Rev. B 2018, 98, 165421. [Google Scholar] [CrossRef]
- Bomantara, R.W.; Gong, J. Measurement-only quantum computation with Floquet Majorana corner modes. Phys. Rev. B 2020, 101, 085401. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin, Germany, 1976. [Google Scholar]
- Ring, P.; Schuck, P. The Nuclear Many Body Problem; Springer: New York, NY, USA, 1980. [Google Scholar]
- Moiseyev, N. Non- Hermitian Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Bender, C.M. PT Symmetry in Quantum and Classical Physics; World Scientific: Singapore, 2019. [Google Scholar]
- Berry, M. Physics of Nonhermitian Degeneracies. Czechoslov. J. Phys. 2004, 54, 1039–1047. [Google Scholar] [CrossRef]
- Heiss, W.D. The physics of exceptional points. J. Phys. A Math. Theor. 2012, 45, 444016. [Google Scholar] [CrossRef]
- Konotop, V.V.; Yang, J.; Zezyulin, D.A. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 2016, 88, 035002. [Google Scholar] [CrossRef]
- Suchkov, S.V.; Sukhorukov, A.A.; Huang, J.; Dmitriev, S.V.; Lee, C.; Kivshar, Y.S. Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photon Rev. 2016, 10, 177–213. [Google Scholar] [CrossRef]
- Schomerus, H. From scattering theory to complex wave dynamics in non-Hermitian PT-symmetric resonators. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120194. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, V.M.M.; Vargas, J.E.B.; Berdakin, M.; Torres, L.E.F.F. Topological states of non-Hermitian systems. Eur. Phys. J. Spec. Top. 2018, 227, 1295–1308. [Google Scholar] [CrossRef]
- El-Ganainy, R.; Makris, K.G.; Khajavikhan, M.; Musslimani, Z.H.; Rotter, S.; Christodoulides, D.N. Non-Hermitian physics and PT symmetry. Nat. Phys. 2018, 14, 11–19. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, L. Parity-time symmetric photonics. Natl. Sci. Rev. 2018, 5, 183–199. [Google Scholar] [CrossRef]
- Miri, M.-A.; Alù, A. Exceptional points in optics and photonics. Science 2019, 363, eaar7709. [Google Scholar] [CrossRef] [PubMed]
- Ghatak, A.; Das, T. New topological invariants in non-Hermitian systems. J. Phys. Condens. Matter 2019, 31, 263001. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, K.; Rotter, S.; Nori, F.; Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 2019, 18, 783–798. [Google Scholar] [CrossRef] [PubMed]
- Ashida, Y.; Gong, Z.; Ueda, M. Non-Hermitian physics. Adv. Phys. 2020, 69, 249–435. [Google Scholar] [CrossRef]
- Yokomizo, K.; Murakami, S. Non-Bloch band theory and bulk–edge correspondence in non-Hermitian systems. Prog. Theor. Exp. Phys. 2020, 2020, ptaa140. [Google Scholar] [CrossRef]
- Kondo, H.; Akagi, Y.; Katsura, H. Non-Hermiticity and topological invariants of magnon Bogoliubov-de Gennes systems. Prog. Theor. Exp. Phys. 2020, 2020, 12A104. [Google Scholar] [CrossRef]
- Yoshida, T.; Peters, R.; Kawakami, N.; Hatsugai, Y. Exceptional band touching for strongly correlated systems in equilibrium. Prog. Theor. Exp. Phys. 2020, 2020, 12A109. [Google Scholar] [CrossRef]
- Bergholtz, E.J.; Budich, J.C.; Kunst, F.K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 2021, 93, 015005. [Google Scholar] [CrossRef]
- Coulais, C.; Fleury, R.; van Wezel, J. Topology and broken Hermiticity. Nat. Phys. 2020, 17, 9–13. [Google Scholar] [CrossRef]
- Ding, K.; Fang, C.; Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 2022, 4, 745–760. [Google Scholar] [CrossRef]
- Zhanga, X.; Zhanga, T.; Lu, M.-H.; Chen, Y.-F. A review on non-Hermitian skin effect. Adv. Phys. X 2022, 7, 2109431. [Google Scholar] [CrossRef]
- Hurst, H.M.; Flebus, B. Non-Hermitian physics in magnetic systems. J. Appl. Phys. 2022, 132, 220902. [Google Scholar] [CrossRef]
- Banerjee, A.; Sarkar, R.; Dey, S.; Narayan, A. Non-Hermitian topological phases: Principles and prospects. J. Phys. Condens. Matter 2023, 35, 33. [Google Scholar] [CrossRef]
- Okuma, N.; Sato, M. Non-Hermitian Topological Phenomena: A Review. Annu. Rev. Condens. Matter Phys. 2023, 14, 83–107. [Google Scholar] [CrossRef]
- Yan, Q.; Zhao, B.; Zhou, R.; Ma, R.; Lyu, Q.; Chu, S.; Hu, X.; Gong, Q. Advances and applications on non-Hermitian topological photonics. Nanophotonics 2023, 12, 2247–2271. [Google Scholar] [CrossRef]
- Lin, R.; Tai, T.; Li, L.; Lee, C.H. Topological non-Hermitian skin effect. Front. Phys. 2023, 18, 53605. [Google Scholar] [CrossRef]
- VMedeny; Grunwald, L.; Kennes, D.M. PT-symmetric, non-Hermitian quantum many-body physics—A methodological perspective. arXiv 2023, arXiv:2303.05956. [Google Scholar]
- Bender, C.M.; Brody, D.C.; Jones, H.F. Complex Extension of Quantum Mechanics. Phys. Rev. Lett. 2002, 89, 270401. [Google Scholar] [CrossRef]
- Zhang, D.-J.; Wang, Q.-H.; Gong, J. Time-dependent PT-symmetric quantum mechanics in generic non-Hermitian systems. Phys. Rev. A 2019, 100, 062121. [Google Scholar] [CrossRef]
- Rüter, C.E.; Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N.; Segev, M.; Kip, D. Observation of parity–time symmetry in optics. Nat. Phys. 2010, 6, 192–195. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, W.; Geng, J.; Song, X.; Ye, X.; Duan, C.-K.; Rong, X.; Du, J. Observation of parity-time symmetry breaking in a single-spin system. Science 2019, 364, 878–880. [Google Scholar] [CrossRef]
- Xia, S.; Kaltsas, D.; Song, D.; Komis, I.; Xu, J.; Szameit, A.; Buljan, H.; Makris, K.G.; Chen, Z. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 2021, 372, 72–76. [Google Scholar] [CrossRef]
- Shen, H.; Zhen, B.; Fu, L. Topological Band Theory for Non-Hermitian Hamiltonians. Phys. Rev. Lett. 2018, 120, 146402. [Google Scholar] [CrossRef]
- Gong, Z.; Ashida, Y.; Kawabata, K.; Takasan, K.; Higashikawa, S.; Ueda, M. Topological Phases of Non-Hermitian Systems. Phys. Rev. X 2018, 8, 031079. [Google Scholar] [CrossRef]
- Kawabata, K.; Shiozaki, K.; Ueda, M.; Sato, M. Symmetry and Topology in Non-Hermitian Physics. Phys. Rev. X 2019, 9, 041015. [Google Scholar] [CrossRef]
- Zhou, H.; Lee, J.Y. Periodic table for topological bands with non-Hermitian symmetries. Phys. Rev. B 2019, 99, 235112. [Google Scholar] [CrossRef]
- Liu, C.-H.; Jiang, H.; Chen, S. Topological classification of non-Hermitian systems with reflection symmetry. Phys. Rev. B 2019, 99, 125103. [Google Scholar] [CrossRef]
- Wojcik, C.C.; Sun, X.; Bzdušek, T.; Fan, S. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B 2020, 101, 205417. [Google Scholar] [CrossRef]
- Altland, A.; Fleischhauer, M.; Diehl, S. Symmetry Classes of Open Fermionic Quantum Matter. Phys. Rev. X 2021, 11, 021037. [Google Scholar] [CrossRef]
- García-García, A.M.; Sá, L.; Verbaarschot, J.J.M. Symmetry Classification and Universality in Non-Hermitian Many-Body Quantum Chaos by the Sachdev-Ye-Kitaev Model. Phys. Rev. X 2022, 12, 021040. [Google Scholar] [CrossRef]
- Wojcik, C.; Wang, K.; Dutt, A.; Zhong, J.; Fan, S. Eigenvalue Topology of Non-Hermitian Band Structures in Two and Three Dimensions. Phys. Rev. 2022, 106, L161401. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, S.-T.; Duan, L.-M. Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas. Phys. Rev. Lett. 2017, 118, 045701. [Google Scholar] [CrossRef]
- Doppler, J.; Mailybaev, A.A.; Bohm, J.; Kuhl, U.; Girschik, A.; Libisch, F.; Milburn, T.J.; Rabl, P.; Moiseyev, N.; Rotter, S. Dynamically encircling an exceptional point for asymmetric mode switching. Nature 2016, 537, 76–79. [Google Scholar] [CrossRef]
- Xu, H.; Mason, D.; Jiang, L.; Harris, J.G.E. Topological energy transfer in an optomechanical system with exceptional points. Nature 2016, 537, 80–83. [Google Scholar] [CrossRef]
- Nasari, H.; Lopez-Galmiche, G.; Lopez-Aviles, H.E.; Schumer, A.; Hassan, A.U.; Zhong, Q.; Rotter, S.; LiKamWa, P.; Christodoulides, D.N.; Khajavikhan, M. Observation of chiral state transfer without encircling an exceptional point. Nature 2022, 605, 256–261. [Google Scholar] [CrossRef]
- Hodaei, H.; Hassan, A.U.; Wittek, S.; Garcia-Gracia, H.; El-Ganainy, R.; Christodoulides, D.N.; Khajavikhan, M. Enhanced sensitivity at higher-order exceptional points. Nature 2017, 548, 187–191. [Google Scholar] [CrossRef]
- Chen, W.; Özdemir, S.K.; Zhao, G.; Yang, L. Exceptional points enhance sensing in an optical microcavity. Nature 2017, 548, 192–196. [Google Scholar] [CrossRef]
- Hokmabadi, M.P.; Schumer, A.; Christodoulides, D.N.; Khajavikhan, M. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity. Nature 2019, 576, 70–74. [Google Scholar] [CrossRef]
- Kononchuk, R.; Cai, J.; Ellis, F.; Thevamaran, R.; Kottos, T. Exceptional-point-based accelerometers with enhanced signal-to-noise ratio. Nature 2022, 607, 697–702. [Google Scholar] [CrossRef]
- Feng, L.; Wong, Z.J.; Ma, R.-M.; Wang, Y.; Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 2014, 346, 972–975. [Google Scholar] [CrossRef]
- Hodaei, H.; Miri, M.-A.; Heinrich, M.; Christodoulides, D.N.; Khajavikhan, M. Parity-time–symmetric microring lasers. Science 2014, 346, 975–978. [Google Scholar] [CrossRef]
- Bandres, M.A.; Wittek, S.; Harari, G.; Parto, M.; Ren, J.; Segev, M.; Christodoulides, D.N.; Khajavikhan, M. Topological insulator laser: Experiments. Science 2018, 359, 1231. [Google Scholar] [CrossRef]
- Lee, T.E. Anomalous Edge State in a Non-Hermitian Lattice. Phys. Rev. Lett. 2016, 116, 133903. [Google Scholar] [CrossRef]
- Xiong, Y. Why does bulk boundary correspondence fail in some non-hermitian topological models. J. Phys. Commun. 2018, 2, 035043. [Google Scholar] [CrossRef]
- Alvarez, V.M.M.; Vargas, J.E.B.; Torres, L.E.F.F. Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B 2018, 97, 121401. [Google Scholar] [CrossRef]
- Kunst, F.K.; Edvardsson, E.; Budich, J.C.; Bergholtz, E.J. Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems. Phys. Rev. Lett. 2018, 121, 026808. [Google Scholar] [CrossRef]
- Yao, S.; Wang, Z. Edge States and Topological Invariants of Non-Hermitian Systems. Phys. Rev. Lett. 2018, 121, 086803. [Google Scholar] [CrossRef]
- Lee, C.H.; Thomale, R. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B 2019, 99, 201103. [Google Scholar] [CrossRef]
- Yokomizo, K.; Murakami, S. Non-Bloch Band Theory of Non-Hermitian Systems. Phys. Rev. Lett. 2019, 123, 066404. [Google Scholar] [CrossRef]
- Song, F.; Yao, S.; Wang, Z. Non-Hermitian Skin Effect and Chiral Damping in Open Quantum Systems. Phys. Rev. Lett. 2019, 123, 170401. [Google Scholar] [CrossRef]
- Kunst, F.K.; Dwivedi, V. Non-Hermitian systems and topology: A transfer-matrix perspective. Phys. Rev. B 2019, 99, 245116. [Google Scholar] [CrossRef]
- Song, F.; Yao, S.; Wang, Z. Non-Hermitian Topological Invariants in Real Space. Phys. Rev. Lett. 2019, 123, 246801. [Google Scholar] [CrossRef]
- Lee, C.H.; Li, L.; Gong, J. Hybrid Higher-Order Skin-Topological Modes in Nonreciprocal Systems. Phys. Rev. Lett. 2019, 123, 016805. [Google Scholar] [CrossRef]
- Borgnia, D.S.; Kruchkov, A.J.; Slager, R.-J. Non-Hermitian Boundary Modes and Topology. Phys. Rev. Lett. 2020, 124, 056802. [Google Scholar] [CrossRef]
- Okuma, N.; Kawabata, K.; Shiozaki, K.; Sato, M. Topological Origin of Non-Hermitian Skin Effects. Phys. Rev. Lett. 2020, 124, 086801. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, Z.; Fang, C. Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems. Phys. Rev. Lett. 2020, 125, 126402. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, X.; Franz, M. Magnetic Suppression of Non-Hermitian Skin Effects. Phys. Rev. Lett. 2021, 127, 256402. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, Z.; Fang, C. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun. 2022, 13, 2496. [Google Scholar] [CrossRef]
- Helbig, T.; Hofmann, T.; Imhof, S.; Abdelghany, M.; Kiessling, T.; Molenkamp, L.W.; Lee, C.H.; Szameit, A.; Greiter, M.; Thomale, R. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 2020, 16, 747–750. [Google Scholar] [CrossRef]
- Xiao, L.; Deng, T.; Wang, K.; Zhu, G.; Wang, Z.; Yi, W.; Xue, P. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 2020, 16, 761–766. [Google Scholar] [CrossRef]
- Ghatak, A.; Brandenbourger, M.; van Wezel, J.; Coulais, C. Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial. Proc. Natl. Acad. Sci. USA 2020, 117, 29561–29568. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Jiang, J.-H.; Lu, M.-H.; Chen, Y.-F. Observation of higher-order non-Hermitian skin effect. Nat. Commun. 2021, 12, 5377. [Google Scholar] [CrossRef]
- Zou, D.; Chen, T.; He, W.; Bao, J.; Lee, C.H.; Sun, H.; Zhang, X. Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun. 2021, 12, 7201. [Google Scholar] [CrossRef]
- Liang, Q.; Xie, D.; Dong, Z.; Li, H.; Li, H.; Gadway, B.; Yi, W.; Yan, B. Dynamic Signatures of Non-Hermitian Skin Effect and Topology in Ultracold Atoms. Phys. Rev. Lett. 2022, 129, 070401. [Google Scholar] [CrossRef]
- Gu, Z.; Gao, H.; Xue, H.; Li, J.; Su, Z.; Zhu, J. Transient non-Hermitian skin effect. Nat. Commun. 2022, 13, 7668. [Google Scholar] [CrossRef]
- Gao, H.; Xue, H.; Gu, Z.; Li, L.; Zhu, W.; Su, Z.; Zhu, J.; Zhang, B.; Chong, Y.D. Anomalous Floquet non-Hermitian skin effect in a ring resonator lattice. Phys. Rev. B 2022, 106, 134112. [Google Scholar] [CrossRef]
- Kawabata, K.; Numasawa, T.; Ryu, S. Entanglement Phase Transition Induced by the Non-Hermitian Skin Effect. Phys. Rev. X 2023, 13, 021007. [Google Scholar] [CrossRef]
- Hatano, N.; Nelson, D.R. Localization Transitions in Non-Hermitian Quantum Mechanics. Phys. Rev. Lett. 1996, 77, 570–573. [Google Scholar] [CrossRef]
- Feinberg, J.; Zee, A. Non-Hermitian localization and delocalization. Phys. Rev. E 1999, 59, 6433–6443. [Google Scholar] [CrossRef]
- Kawabata, K.; Ryu, S. Nonunitary Scaling Theory of Non-Hermitian Localization. Phys. Rev. Lett. 2021, 126, 166801. [Google Scholar] [CrossRef]
- Luo, X.; Ohtsuki, T.; Shindou, R. Universality Classes of the Anderson Transitions Driven by Non-Hermitian Disorder. Phys. Rev. Lett. 2021, 126, 090402. [Google Scholar] [CrossRef]
- Lin, Q.; Li, T.; Xiao, L.; Wang, K.; Yi, W.; Xue, P. Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun. 2022, 13, 3229. [Google Scholar] [CrossRef]
- Longhi, S. Topological Phase Transition in non-Hermitian Quasicrystals. Phys. Rev. Lett. 2019, 122, 237601. [Google Scholar] [CrossRef]
- Jiang, H.; Lang, L.-J.; Yang, C.; Zhu, S.-L.; Chen, S. Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys. Rev. B 2019, 100, 054301. [Google Scholar] [CrossRef]
- Zeng, Q.-B.; Yang, Y.-B.; Xu, Y. Topological phases in non-Hermitian Aubry-André-Harper models. Phys. Rev. B 2020, 101, 020201. [Google Scholar] [CrossRef]
- Weidemann, S.; Kremer, M.; Longhi, S.; Szamei, A. Topological triple phase transition in non-Hermitian Floquet quasicrystals. Nature 2022, 601, 354–359. [Google Scholar] [CrossRef]
- Lin, Q.; Li, T.; Xiao, L.; Wang, K.; Yi, W.; Xue, P. Topological Phase Transitions and Mobility Edges in Non-Hermitian Quasicrystals. Phys. Rev. Lett. 2022, 129, 113601. [Google Scholar] [CrossRef]
- Ashida, Y.; Furukawa, S.; Ueda, M. Parity-time-symmetric quantum critical phenomena. Nat. Commun. 2017, 8, 15791. [Google Scholar] [CrossRef]
- Nakagawa, M.; Kawakami, N.; Ueda, M. Non-Hermitian Kondo Effect in Ultracold Alkaline-Earth Atoms. Phys. Rev. Lett. 2018, 121, 203001. [Google Scholar] [CrossRef]
- Shen, H.; Fu, L. Quantum Oscillation from In-Gap States and a Non-Hermitian Landau Level Problem. Phys. Rev. Lett. 2018, 121, 026403. [Google Scholar] [CrossRef]
- Hamazaki, R.; Kawabata, K.; Ueda, M. Non-Hermitian Many-Body Localization. Phys. Rev. Lett. 2019, 123, 090603. [Google Scholar] [CrossRef]
- Luitz, D.J.; Piazza, F. Exceptional points and the topology of quantum many-body spectra. Phys. Rev. Res. 2019, 1, 033051. [Google Scholar] [CrossRef]
- Yoshida, T.; Kudo, K.; Hatsugai, Y. Non-Hermitian fractional quantum Hall states. Sci. Rep. 2019, 9, 16895. [Google Scholar] [CrossRef]
- Zhang, D.-W.; Chen, Y.-L.; Zhang, G.-Q.; Lang, L.-J.; Li, Z.; Zhu, S.-L. Skin superfluid, topological Mott in-sulators, and asymmetric dynamics in an interacting non-Hermitian Aubry-André-Harper model. Phys. Rev. B 2020, 101, 235150. [Google Scholar] [CrossRef]
- Guo, C.-X.; Wang, X.-R.; Kou, S.-P. Non-Hermitian avalanche effect: Non-perturbative effect induced by local non-Hermitian perturbation on a Z2 topological order. EPL Europhys. Lett. 2020, 131. [Google Scholar] [CrossRef]
- Okuma, N.; Sato, M. Non-Hermitian Skin Effects in Hermitian Correlated or Disordered Systems: Quantities Sensitive or Insensitive to Boundary Effects and Pseudo-Quantum-Number. Phys. Rev. Lett. 2021, 126, 176601. [Google Scholar] [CrossRef]
- Xi, W.; Zhang, Z.-H.; Gu, Z.-C.; Chen, W.-Q. Classification of topological phases in one dimensional interacting non-Hermitian systems and emergent unitarity. Sci. Bull. 2021, 66, 1731–1739. [Google Scholar] [CrossRef]
- Yang, K.; Morampudi, S.C.; Bergholtz, E.J. Exceptional Spin Liquids from Couplings to the Environment. Phys. Rev. Lett. 2021, 126, 077201. [Google Scholar] [CrossRef]
- Zhang, S.-B.; Denner, M.M.; Bzdušek, T.; Sentef, M.A.; Neupert, T. Symmetry breaking and spectral structure of the interacting Hatano-Nelson model. Phys. Rev. B 2022, 106, L121102. [Google Scholar] [CrossRef]
- Kawabata, K.; Shiozaki, K.; Ryu, S. Many-body topology of non-Hermitian systems. Phys. Rev. B 2022, 105, 165137. [Google Scholar] [CrossRef]
- Faugno, W.N.; Ozawa, T. Interaction-Induced Non-Hermitian Topological Phases from a Dynamical Gauge Field. Phys. Rev. Lett. 2022, 129, 180401. [Google Scholar] [CrossRef]
- Suthar, K.; Wang, Y.-C.; Huang, Y.-P.; Jen, H.H.; You, J.-S. Non-Hermitian many-body localization with open boundaries. Phys. Rev. B 2022, 106, 064208. [Google Scholar] [CrossRef]
- Rudner, M.S.; Levitov, L.S. Topological Transition in a Non-Hermitian Quantum Walk. Phys. Rev. Lett. 2009, 102, 065703. [Google Scholar] [CrossRef]
- Yuce, C. PT symmetric Floquet topological phase. Eur. Phys. J. D 2015, 69, 184. [Google Scholar] [CrossRef]
- Gong, J.; Wang, Q.-H. Stabilizing non-Hermitian systems by periodic driving. Phys. Rev. A 2015, 91, 042135. [Google Scholar] [CrossRef]
- Huang, Y.; Yin, Z.-Q.; Yang, W.L. Realizing a topological transition in a non-Hermitian quantum walk with circuit QED. Phys. Rev. A 2016, 94, 022302. [Google Scholar] [CrossRef]
- Rakovszky, T.; Asbóth, J.K.; Alberti, A. Detecting topological invariants in chiral symmetric insulators via losses. Phys. Rev. B 2017, 95, 201407. [Google Scholar] [CrossRef]
- Zhan, X.; Xiao, L.; Bian, Z.; Wang, K.; Qiu, X.; Sanders, B.C.; Yi, W.; Xue, P. Detecting Topological Invariants in Nonunitary Discrete-Time Quantum Walks. Phys. Rev. Lett. 2017, 119, 130501. [Google Scholar] [CrossRef]
- Xiao, L.; Zhan, X.; Bian, Z.H.; Wang, K.K.; Wang, X.P.; Li, J.; Mochizuki, K.; Kim, D.; Kawakami, N.; Yi, W.; et al. Observation of topological edge states in parity-time-symmetric quantum walks. Nat. Phys. 2017, 13, 1117–1123. [Google Scholar] [CrossRef]
- Longhi, S. Floquet exceptional points and chirality in non-Hermitian Hamiltonians. J. Phys. A Math. Theor. 2017, 50, 505201. [Google Scholar] [CrossRef]
- Chitsazi, M.; Li, H.; Ellis, F.M.; Kottos, T. Experimental Realization of Floquet PT-Symmetric Systems. Phys. Rev. Lett. 2017, 119, 093901. [Google Scholar] [CrossRef]
- Chen, T.; Wang, B.; Zhang, X. Characterization of topological phases and selection of topological interface modes in the parity-time-symmetric quantum walk. Phys. Rev. A 2018, 97, 052117. [Google Scholar] [CrossRef]
- León-Montiel, R.D.J.; Quiroz-Juárez, M.A.; Domínguez-Juárez, J.L.; Quintero-Torres, R.; Aragón, J.L.; Harter, A.K.; Joglekar, Y.N. Observation of slowly decaying eigenmodes without exceptional points in Floquet dissipative synthetic circuits. Commun. Phys. 2018, 1, 88. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, Z.-Q.; Chan, C.T. Photonic Floquet media with a complex time-periodic permittivity. Phys. Rev. B 2018, 98, 085142. [Google Scholar] [CrossRef]
- Koutserimpas, T.T.; Fleury, R. Nonreciprocal Gain in Non-Hermitian Time-Floquet Systems. Phys. Rev. Lett. 2018, 120, 087401. [Google Scholar] [CrossRef]
- Turker, Z.; Tombuloglu, S.; Yuce, C. PT symmetric Floquet topological phase in SSH model. Phys. Lett. A 2018, 382, 2013–2016. [Google Scholar] [CrossRef]
- Wang, K.; Qiu, X.; Xiao, L.; Zhan, X.; Bian, Z.; Sanders, B.C.; Yi, W.; Xue, P. Observation of emergent momentum–time skyrmions in parity–time-symmetric non-unitary quench dynamics. Nat. Commun. 2019, 10, 2293. [Google Scholar] [CrossRef]
- Li, J.; Harter, A.K.; Liu, J.; de Melo, L.; Joglekar, Y.N.; Luo, L. Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat. Commun. 2019, 10, 855. [Google Scholar] [CrossRef]
- Höckendorf, B.; Alvermann, A.; Fehske, H. Non-Hermitian Boundary State Engineering in Anomalous Floquet Topological Insulators. Phys. Rev. Lett. 2019, 123, 190403. [Google Scholar] [CrossRef]
- Li, M.; Ni, X.; Weiner, M.; Alù, A.; Khanikaev, A.B. Topological phases and nonreciprocal edge states in non-Hermitian Floquet insulators. Phys. Rev. B 2019, 100, 045423. [Google Scholar] [CrossRef]
- van Caspel, M.; Arze, S.E.T.; Castillo, I.P. Dynamical signatures of topological order in the driven-dissipative Kitaev chain. Sci. Post Phys. 2019, 6, 26. [Google Scholar] [CrossRef]
- Zhao, W.-L.; Wang, J.; Wang, X.; Tong, P. Directed momentum current induced by the PT-symmetric driving. Phys. Rev. E 2019, 99, 042201. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, J. Non-Hermitian Floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect. Phys. Rev. B 2020, 101, 045415. [Google Scholar] [CrossRef]
- Höckendorf, B.; Alvermann, A.; Fehske, H. Topological origin of quantized transport in non-Hermitian Floquet chains. Phys. Rev. Res. 2020, 2, 023235. [Google Scholar] [CrossRef]
- Wu, H.; An, J.-H. Floquet topological phases of non-Hermitian systems. Phys. Rev. B 2020, 102, 041119. [Google Scholar] [CrossRef]
- Banerjee, A.; Narayan, A. Controlling exceptional points with light. Phys. Rev. B 2020, 102, 205423. [Google Scholar] [CrossRef]
- Harter, A.K.; Joglekar, Y.N. Connecting active and passive PT-symmetric Floquet modulation models. Prog. Theor. Exp. Phys. 2020, 2020, ptaa181. [Google Scholar] [CrossRef]
- Mudute-Ndumbe, S.; Graefe, E.-M. A non-Hermitian PT-symmetric kicked top. New J. Phys. 2020, 22, 103011. [Google Scholar] [CrossRef]
- He, P.; Huang, Z.-H. Floquet engineering and simulating exceptional rings with a quantum spin system. Phys. Rev. A 2020, 102, 062201. [Google Scholar] [CrossRef]
- Wu, H.; Wang, B.-Q.; An, J.-H. Floquet second-order topological insulators in non-Hermitian systems. Phys. Rev. B 2021, 103, L041115. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.; Yang, X. Non-Hermitian bulk-boundary correspondence in a periodically driven system. Phys. Rev. B 2021, 103, 075126. [Google Scholar] [CrossRef]
- Ding, L.; Shi, K.; Zhang, Q.; Shen, D.; Zhang, X.; Zhang, W. Experimental Determination of PT-Symmetric Exceptional Points in a Single Trapped Ion. Phys. Rev. Lett. 2021, 126, 083604. [Google Scholar] [CrossRef]
- Wu, S.; Song, W.; Gao, S.; Chen, Y.; Zhu, S.; Li, T. Floquet pi mode engineering in non-Hermitian waveguide lattices. Phys. Rev. Res. 2021, 3, 023211. [Google Scholar] [CrossRef]
- Chowdhury, D.; Banerjee, A.; Narayan, A. Light-driven Lifshitz transitions in non-Hermitian multi-Weyl semimetals. Phys. Rev. A 2021, 103, L051101. [Google Scholar] [CrossRef]
- Vyas, V.M.; Roy, D. Topological aspects of periodically driven non-Hermitian Su-Schrieffer-Heeger model. Phys. Rev. B 2021, 103, 075441. [Google Scholar] [CrossRef]
- Xiao, L.; Deng, T.; Wang, K.; Wang, Z.; Yi, W.; Xue, P. Observation of non-Bloch parity-time symmetry and exceptional points. Phys. Rev. Lett. 2021, 126, 230402. [Google Scholar] [CrossRef]
- Zhao, W.-L.; Hu, Y.; Li, Z.; Wang, Q. Superexponential growth of out-of-time-ordered correlators. Phys. Rev. B 2021, 103, 184311. [Google Scholar] [CrossRef]
- Mittal, V.; Raj, A.; Dey, S.; Goyal, S.K. Persistence of topological phases in non-Hermitian quantum walks. Sci. Rep. 2021, 11, 10262. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; An, J.-H. Non-Hermitian Weyl semimetal and its Floquet engineering. Phys. Rev. B 2022, 105, L121113. [Google Scholar] [CrossRef]
- Liu, C.-H.; Hu, H.; Chen, S. Symmetry and topological classification of Floquet non-Hermitian systems. Phys. Rev. B 2022, 105, 214305. [Google Scholar] [CrossRef]
- Zhu, W.; Gong, J. Hybrid skin-topological modes without asymmetric couplings. Phys. Rev. B 2022, 106, 035425. [Google Scholar] [CrossRef]
- Chowdhury, D.; Banerjee, A.; Narayan, A. Exceptional hexagonal warping effect in multi-Weyl semimetals. Phys. Rev. B 2022, 105, 075133. [Google Scholar] [CrossRef]
- Zhao, W.-L. Quantization of out-of-time-ordered correlators in non-Hermitian chaotic systems. Phys. Rev. Res. 2022, 4, 023004. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Nag, T. Non-Hermitian higher-order topological superconductors in two dimensions: Statics and dynamics. Phys. Rev. B 2022, 106, L140303. [Google Scholar] [CrossRef]
- Banerjee, T.; Sengupta, K. Emergent conservation in the Floquet dynamics of integrable non-Hermitian models. Phys. Rev. B 2023, 107, 155117. [Google Scholar] [CrossRef]
- Liu, C.-H.; Hu, H.; Chen, S.; Liu, X.-J. Anomalous second-order skin modes in Floquet non-Hermitian systems. arXiv 2023, arXiv:2303.11259. [Google Scholar]
- Sun, Y.; Hou, X.; Wan, T.; Wang, F.; Zhu, S.; Ruan, Z.; Yang, Z. Photonic Floquet skin-topological effect. arXiv 2023, arXiv:2306.03705. [Google Scholar]
- Li, Y.; Lu, C.; Zhang, S.; Liu, Y.-C. Loss-induced Floquet non-Hermitian skin effect. arXiv 2023, arXiv:2306.04460. [Google Scholar]
- Zhou, L.; Gong, J. Non-Hermitian Floquet topological phases with arbitrarily many real-quasienergy edge states. Phys. Rev. B 2018, 98, 205417. [Google Scholar] [CrossRef]
- Zhou, L.; Pan, J. Non-Hermitian Floquet topological phases in the double-kicked rotor. Phys. Rev. A 2019, 100, 053608. [Google Scholar] [CrossRef]
- Zhou, L. Dynamical characterization of non-Hermitian Floquet topological phases in one dimension. Phys. Rev. B 2019, 100, 184314. [Google Scholar] [CrossRef]
- Zhou, L. Non-Hermitian Floquet topological superconductors with multiple Majorana edge modes. Phys. Rev. B 2020, 101, 014306. [Google Scholar] [CrossRef]
- Zhou, L. Non-Hermitian Floquet Phases with Even-Integer Topological Invariants in a Periodically Quenched Two-Leg Ladder. Entropy 2020, 22, 746. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhou, L. Non-Hermitian Floquet second order topological insulators in periodically quenched lattices. Phys. Rev. B 2020, 102, 094305. [Google Scholar] [CrossRef]
- Zhao, W.-L.; Zhou, L.; Liu, J.; Tong, P.; Huang, K. Superexponential diffusion in nonlinear non-Hermitian systems. Phys. Rev. A 2020, 102, 062213. [Google Scholar] [CrossRef]
- Zhou, L.; Gu, Y.; Gong, J. Dual topological characterization of non-Hermitian Floquet phases. Phys. Rev. B 2021, 103, L041404. [Google Scholar] [CrossRef]
- Zhou, L. Floquet engineering of topological localization transitions and mobility edges in one-dimensional non-Hermitian quasicrystals. Phys. Rev. Res. 2021, 3, 033184. [Google Scholar] [CrossRef]
- Zhou, L.; Bomantara, R.W.; Wu, S. qth-root non-Hermitian Floquet topological insulators. SciPost Phys. 2022, 13, 15. [Google Scholar] [CrossRef]
- Zhou, L.; Han, W. Driving-induced multiple PT-symmetry breaking transitions and reentrant localization transitions in non-Hermitian Floquet quasicrystals. Phys. Rev. B 2022, 106, 054307. [Google Scholar] [CrossRef]
- Zhou, L. Adiabatic Pumping in Floquet and Open Quantum Systems: An Interplay among Geometry, Topology and Quantum Coherence. Ph.D. Thesis, Department of Physics, National University of Singapore, Singapore, 2015. [Google Scholar]
- Grosso, G.; Parravicini, G.P. Solid State Physics; Academic Press: London, UK, 2014. [Google Scholar]
- Shirley, J.H. Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time. Phys. Rev. 1965, 138, B979–B987. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B. The quasienergy of a quantum-mechanical system subjected to a periodic action. Sov. Phys. JETP 1967, 24, 1006. [Google Scholar]
- Sambe, H. Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field. Phys. Rev. A 1973, 7, 2203–2213. [Google Scholar] [CrossRef]
- Rigolin, G.; Ortiz, G.; Ponce, V.H. Beyond the quantum adiabatic approximation: Adiabatic perturbation theory. Phys. Rev. A 2008, 78, 052508. [Google Scholar] [CrossRef]
- Brody, D.C. Biorthogonal quantum mechanics. J. Phys. A Math. Theor. 2013, 47, 035305. [Google Scholar] [CrossRef]
- Ryu, S.; Schnyder, A.P.; Furusaki, A.; Ludwig, A.W.W. Topological insulators and superconductors: Tenfold way and dimensional hierarchy. New J. Phys. 2010, 12, 065010. [Google Scholar] [CrossRef]
- Mondragon-Shem, I.; Hughes, T.L.; Song, J.; Prodan, E. Topological Criticality in the Chiral-Symmetric AIII Class at Strong Disorder. Phys. Rev. Lett. 2014, 113, 046802. [Google Scholar] [CrossRef]
- Song, J.; Prodan, E. AIII and BDI topological systems at strong disorder. Phys. Rev. B 2014, 89, 224203. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Niu, S.; Liu, X. Dynamical classification of topological quantum phases. Sci. Bull. 2018, 63, 1385. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Ke, Y.; Zhong, H.; Lee, C. Dynamic winding number for exploring band topology. Phys. Rev. Res. 2020, 2, 023043. [Google Scholar] [CrossRef]
- Cardano, F.; D’errico, A.; Dauphin, A.; Maffei, M.; Piccirillo, B.; de Lisio, C.; De Filippis, G.; Cataudella, V.; Santamato, E.; Marrucci, L.; et al. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 2017, 8, 15516. [Google Scholar] [CrossRef] [PubMed]
- Maffei, M.; Dauphin, A.; Cardano, F.; Lewenstein, M.; Massignan, P. Topological characterization of chiral models through their long time dynamics. New J. Phys. 2017, 20, 013023. [Google Scholar] [CrossRef]
- Meier, E.J.; An, F.A.; Dauphin, A.; Maffei, M.; Massignan, P.; Hughes, T.L.; Gadway, B. Observation of the topological Anderson insulator in disordered atomic wires. Science 2018, 362, 929. [Google Scholar] [CrossRef] [PubMed]
- Goldsheid, I.Y.; Khoruzhenko, B.A. Distribution of Eigenvalues in Non-Hermitian Anderson Models. Phys. Rev. Lett. 1998, 80, 2897–2900. [Google Scholar] [CrossRef]
- Chalker, J.T.; Mehlig, B. Eigenvector Statistics in Non-Hermitian Random Matrix Ensembles. Phys. Rev. Lett. 1998, 81, 3367–3370. [Google Scholar] [CrossRef]
- Markum, H.; Pullirsch, R.; Wettig, T. Non-Hermitian Random Matrix Theory and Lattice QCD with Chemical Potential. Phys. Rev. Lett. 1999, 83, 484–487. [Google Scholar] [CrossRef]
- Molinari, L.G. Non-Hermitian spectra and Anderson localization. J. Phys. A Math. Theor. 2009, 42, 265204. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, X.; Cao, J.; Chen, S. Non-Hermitian mobility edges in one-dimensional quasicrystals with parity-time symmetry. Phys. Rev. B 2020, 101, 174205. [Google Scholar] [CrossRef]
- Li, X.; Das Sarma, S. Mobility edge and intermediate phase in one-dimensional incommensurate lattice potentials. Phys. Rev. B 2020, 101, 064203. [Google Scholar] [CrossRef]
- Bartlett, J.; Zhao, E. Unravelling the edge spectra of non-Hermitian Chern insulators. Phys. Rev. B 2023, 107, 035101. [Google Scholar] [CrossRef]
- Malzard, S.; Poli, C.; Schomerus, H. Topologically Protected Defect States in Open Photonic Systems with Non-Hermitian Charge-Conjugation and Parity-Time Symmetry. Phys. Rev. Lett. 2015, 115, 200402. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L. Generating Many Majorana Corner Modes and Multiple Phase Transitions in Floquet Second-Order Topological Superconductors. Symmetry 2022, 14, 2546. [Google Scholar] [CrossRef]
- Arkinstall, J.; Teimourpour, M.H.; Feng, L.; El-Ganainy, R.; Schomerus, H. Topological tight-binding models from nontrivial square roots. Phys. Rev. B 2017, 95, 165109. [Google Scholar] [CrossRef]
- Kremer, M.; Petrides, I.; Meyer, E.; Heinrich, M.; Zilberberg, O.; Szameit, A. A square-root topological insulator with non-quantized indices realized with photonic Aharonov-Bohm cages. Nat. Commun. 2020, 11, 907. [Google Scholar] [CrossRef]
- Song, L.; Yang, H.; Cao, Y.; Yan, P. Realization of the Square-Root Higher-Order Topological Insulator in Electric Circuits. Nano Lett. 2020, 20, 7566–7571. [Google Scholar] [CrossRef]
- Yan, M.; Huang, X.; Luo, L.; Lu, J.; Deng, W.; Liu, Z. Acoustic square-root topological states. Phys. Rev. B 2020, 102, 180102. [Google Scholar] [CrossRef]
- Mizoguchi, T.; Kuno, Y.; Hatsugai, Y. Square-root higher-order topological insulator on a decorated honeycomb lattice. Phys. Rev. A 2020, 102, 033527. [Google Scholar] [CrossRef]
- Ezawa, M. Systematic construction of square-root topological insulators and superconductors. Phys. Rev. Res. 2020, 2, 033397. [Google Scholar] [CrossRef]
- Marques, A.M.; Madail, L.; Dias, R.G. One-dimensional 2n-root topological insulators and superconductors. Phys. Rev. B 2021, 103, 235425. [Google Scholar] [CrossRef]
- Marques, A.M.; Dias, R.G. 2n-root weak, Chern, and higher-order topological insulators, and 2n-root topological semimetals. Phys. Rev. B 2021, 104, 165410. [Google Scholar] [CrossRef]
- Yoshida, T.; Mizoguchi, T.; Kuno, Y.; Hatsugai, Y. Square-root topological phase with time-reversal and particle-hole symmetry. Phys. Rev. B 2021, 103, 235130. [Google Scholar] [CrossRef]
- Lin, Z.; Ke, S.; Zhu, X.; Li, X. Square-root non-Bloch topological insulators in non-Hermitian ring resonators. Opt. Express 2021, 29, 8462–8476. [Google Scholar] [CrossRef] [PubMed]
- Bomantara, R.W. Square-root Floquet topological phases and time crystals. Phys. Rev. B 2022, 106, L060305. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The quantum theory of the electron. Proc. R. Soc. London A 1928, 117, 610. [Google Scholar]
- Zhou, L.; Han, W. Non-Hermitian quasicrystal in dimerized lattices. Chin. Phys. B 2021, 30, 100308. [Google Scholar] [CrossRef]
- Han, W.; Zhou, L. Dimerization-induced mobility edges and multiple reentrant localization transitions in non-Hermitian quasicrystals. Phys. Rev. B 2022, 105, 054204. [Google Scholar] [CrossRef]
- Zhou, L. Non-Abelian generalization of non-Hermitian quasicrystal: PT-symmetry breaking, localization, entanglement and topological transitions. Phys. Rev. B 2023, 108, 014202. [Google Scholar] [CrossRef]
- Park, J.; Cho, H.; Lee, S.; Lee, K.; Lee, K.; Park, H.C.; Ryu, J.-W.; Park, N.; Jeon, S.; Min, B. Revealing non-Hermitian band structure of photonic Floquet media. Sci. Adv. 2022, 8, eabo6220. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Q.-H.; Wang, H.; Gong, J. Dynamical quantum phase transitions in non-Hermitian lattices. Phys. Rev. A 2018, 98, 022129. [Google Scholar] [CrossRef]
- Zhou, L.; Du, Q. Non-Hermitian topological phases and dynamical quantum phase transitions: A generic connection. New J. Phys. 2021, 23, 063041. [Google Scholar] [CrossRef]
- Yang, K.; Zhou, L.; Ma, W.; Kong, X.; Wang, P.; Qin, X.; Rong, X.; Wang, Y.; Shi, F.; Gong, J.; et al. Floquet dynamical quantum phase transitions. Phys. Rev. B 2019, 100, 085308. [Google Scholar] [CrossRef]
- Zhou, L.; Du, Q. Floquet dynamical quantum phase transitions in periodically quenched systems. J. Phys. Condens. Matter 2021, 33, 345403. [Google Scholar] [CrossRef] [PubMed]
- Naji, J.; Jafari, R.; Zhou, L.; Langari, A. Engineering Floquet dynamical quantum phase transitions. Phys. Rev. B 2022, 106, 094314. [Google Scholar] [CrossRef]
- Zhou, L. Entanglement spectrum and entropy in Floquet topological matter. Phys. Rev. Res. 2022, 4, 043164. [Google Scholar] [CrossRef]
- Zhou, L. Entanglement phase transitions in non-Hermitian quasicrystals. arXiv 2023, arXiv:2309.00924. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Zhang, D.-J. Non-Hermitian Floquet Topological Matter—A Review. Entropy 2023, 25, 1401. https://doi.org/10.3390/e25101401
Zhou L, Zhang D-J. Non-Hermitian Floquet Topological Matter—A Review. Entropy. 2023; 25(10):1401. https://doi.org/10.3390/e25101401
Chicago/Turabian StyleZhou, Longwen, and Da-Jian Zhang. 2023. "Non-Hermitian Floquet Topological Matter—A Review" Entropy 25, no. 10: 1401. https://doi.org/10.3390/e25101401