A Multi-Modal Deep-Learning Air Quality Prediction Method Based on Multi-Station Time-Series Data and Remote-Sensing Images: Case Study of Beijing and Tianjin
Abstract
:1. Introduction
- We propose a new multi-modal deep-learning prediction model (Res-GCN) that utilizes ResNet to extract visual features from remote-sensing images and employs a dynamic spatio-temporal graph convolution network to extract spatio-temporal features from multi-station time-series data. By extracting two distinct modal features, Res-GCN achieves a more accurate prediction of air quality. To the best of our knowledge, we are the first to extract multi-modal features for prediction from both time-series data and remote-sensing images.
- We introduce dynamic time pattern distance to construct dynamic graphs, better accommodating the temporal dynamics of air quality. The generated dynamic graphs, coupled with the dynamic graph convolutional network, aid in the flexible extraction of spatio-temporal features, thereby enhancing predictive performance.
- Ablation experiments demonstrate the effectiveness of the components of Res-GCN. Comparative experiments reveal the superiority of Res-GCN over mono-modal models, affirming the utility of multi-modality.
2. Problem Statement
3. Methodology
3.1. Overview
3.2. Residual Network
3.3. Dynamic Spatio-Temporal Graph Convolution Network
3.3.1. Dynamic Graph Construction
3.3.2. Graph Convolutional Network Layer
3.3.3. Temporal Convolution Network Block
3.3.4. Temporal Attention
3.3.5. Spatio-Temporal Convolutional Block
3.4. Feature Fusion and Prediction
3.5. Loss Function
4. Experiments and Results
4.1. Dataset
4.1.1. Time-Series Dataset
4.1.2. Remote-Sensing Images’ Dataset
4.2. Evaluation Criteria
4.3. Model Parameter Configurations
4.4. Performance Comparison
- ARIMA [20]: Autoregressive integrated moving average model, comprehensively used as an interpretable statistical model for time-series forecasting.
- SVR [48]: Support vector regression model, a machine learning model that utilizes support vectors for regression tasks.
- DNN: Deep neural network, a basic deep-learning model that consists of multiple densely fully connected layers with ReLU activation function.
- LSTM [49]: Long short-term memory model, an RNN variant extensively utilized for processing and learning from time-series data.
- CNN-LSTM [50]: A combined model using CNN for handling spatial features and LSTM for capturing temporal characteristics.
- TCN [45]: Temporal convolutional network, primarily composed of stacked dilated convolutional layers and residual blocks. Compared to LSTM, it excels in capturing long-range temporal dependencies.
- STGCN [51]: Specifically designed GNN model for spatio-temporal graph prediction. It leverages GCN and temporal gate convolution to capture hidden spatio-temporal correlations.
- Informer [52]: A Transformer-based model for time-series forecasting. It utilizes a prob-sparse self-attention mechanism to capture long-range temporal dependencies.
- STSGCN [53]: A spatio-temporal graph prediction model based on graph neural networks. It combines local graphs from multiple time steps to construct a large synchronized graph, utilizing GCN to extract spatio-temporal dependencies from the synchronized graph.
4.5. Model Component Analysis
4.6. Different Graph Construction Methods’ Comparison
4.7. Multi-Station Prediction Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Zhang, Y.; Li, G. Air quality index prediction using a new hybrid model considering multiple influencing factors: A case study in China. Atmos. Pollut. Res. 2023, 14, 101677. [Google Scholar] [CrossRef]
- Franklin, B.A.; Brook, R.; Pope, C.A., III. Air pollution and cardiovascular disease. Curr. Probl. Cardiol. 2015, 40, 207–238. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Zheng, X.Y.; Chung, K.F.; Zhong, N.S. Impact of air pollution on the burden of chronic respiratory diseases in China: Time for urgent action. Lancet 2016, 388, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Yang, J.; Huang, C.; Liu, H. The contribution of socioeconomic factors to PM2.5 pollution in urban China. Environ. Pollut. 2018, 233, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ding, Y.; Cheng, J.C.; Jiang, F.; Tan, Y.; Gan, V.J.; Wan, Z. Identification of high impact factors of air quality on a national scale using big data and machine learning techniques. J. Clean. Prod. 2020, 244, 118955. [Google Scholar] [CrossRef]
- Jain, S.; Presto, A.A.; Zimmerman, N. Spatial Modeling of Daily PM2.5, NO2, and CO Concentrations Measured by a Low-Cost Sensor Network: Comparison of Linear, Machine Learning, and Hybrid Land Use Models. Environ. Sci. Technol. 2021, 55, 8631–8641. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Kampffmeyer, M.; Jenssen, R.; Salberg, A.B. Dense Dilated Convolutions’ Merging Network for Land Cover Classification. IEEE Trans. Geosci. Remote. Sens. 2020, 58, 6309–6320. [Google Scholar] [CrossRef]
- Benaissi, L.; Tarek, A.; Tobi, A.; Ibouh, H.; Zaid, K.; Elamari, K.; Hibti, M. Geological mapping and mining prospecting in the Aouli inlier (Eastern Meseta, Morocco) based on remote sensing and geographic information systems (GIS). China Geol. 2022, 5, 614–625. [Google Scholar] [CrossRef]
- Song, P.; Li, J.; An, Z.; Fan, H.; Fan, L. CTMFNet: CNN and Transformer Multiscale Fusion Network of Remote Sensing Urban Scene Imagery. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 5900314. [Google Scholar] [CrossRef]
- Wang, Y.; Bashir, S.M.A.; Khan, M.; Ullah, Q.; Wang, R.; Song, Y.; Guo, Z.; Niu, Y. Remote sensing image super-resolution and object detection: Benchmark and state of the art. Expert Syst. Appl. 2022, 197, 116793. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Cribb, M.; Huang, W.; Xue, W.; Sun, L.; Guo, J.; Peng, Y.; Li, J.; Lyapustin, A.; et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees. Atmos. Chem. Phys. 2020, 20, 3273–3289. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote. Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Wu, J.; Ma, J.; Liang, F.; Dong, W.; Shi, G.; Lin, W. End-to-End Blind Image Quality Prediction With Cascaded Deep Neural Network. IEEE Trans. Image Process. 2020, 29, 7414–7426. [Google Scholar] [CrossRef]
- Sun, S.; Yu, T.; Xu, J.; Zhou, W.; Chen, Z. GraphIQA: Learning Distortion Graph Representations for Blind Image Quality Assessment. IEEE Trans. Multimed. 2023, 25, 2912–2925. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, W.; Li, X.; Xu, J.; Chen, Z. LIQA: Lifelong Blind Image Quality Assessment. IEEE Trans. Multimed. 2023, 25, 5358–5373. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.; Huang, B.; Deng, L. Continuous Learning for Blind Image Quality Assessment with Contrastive Transformer. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–9 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Su, S.; Yan, Q.; Zhu, Y.; Sun, J.; Zhang, Y. From Distortion Manifold to Perceptual Quality: A Data Efficient Blind Image Quality Assessment Approach. Pattern Recognit. 2023, 133, 109047. [Google Scholar] [CrossRef]
- Saha, A.; Mishra, S.; Bovik, A.C. Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 5846–5855. [Google Scholar]
- Zhou, W.; Wu, X.; Ding, S.; Cheng, Y. Predictive analysis of the air quality indicators in the Yangtze River Delta in China: An application of a novel seasonal grey model. Sci. Total. Environ. 2020, 748, 141428. [Google Scholar] [CrossRef] [PubMed]
- Gopu, P.; Panda, R.R.; Nagwani, N.K. Time Series Analysis Using ARIMA Model for Air Pollution Prediction in Hyderabad City of India. In Soft Computing and Signal Processing; Reddy, V.S., Prasad, V.K., Wang, J., Reddy, K.T.V., Eds.; Springer: Singapore, 2021; pp. 47–56. [Google Scholar] [CrossRef]
- Ma, J.; Yu, Z.; Qu, Y.; Xu, J.; Cao, Y. Application of the XGBoost Machine Learning Method in PM2.5 Prediction: A Case Study of Shanghai. Aerosol Air Qual. Res. 2020, 20, 128–138. [Google Scholar] [CrossRef]
- Liu, C.; Pan, G.; Song, D.; Wei, H. Air Quality Index Forecasting via Genetic Algorithm-Based Improved Extreme Learning Machine. IEEE Access 2023, 11, 67086–67097. [Google Scholar] [CrossRef]
- Patel, K.; Bhandari, S.; Gani, S.; Kumar, P.; Baig, N.; Habib, G.; Apte, J.; Hildebrandt Ruiz, L. Factors influencing ambient particulate matter in Delhi, India: Insights from machine learning. Aerosol Sci. Technol. 2023, 57, 546–561. [Google Scholar] [CrossRef]
- Lei, T.M.T.; Ng, S.C.W.; Siu, S.W.I. Application of ANN, XGBoost, and Other ML Methods to Forecast Air Quality in Macau. Sustainability 2023, 15, 5341. [Google Scholar] [CrossRef]
- Yi, X.; Zhang, J.; Wang, Z.; Li, T.; Zheng, Y. Deep Distributed Fusion Network for Air Quality Prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 19–23 August 2018; KDD ’18. pp. 965–973. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Wang, X.; Wang, J.; Huang, M. Air quality prediction using CT-LSTM. Neural Comput. Appl. 2021, 33, 4779–4792. [Google Scholar] [CrossRef]
- Chen, H.; Guan, M.; Li, H. Air Quality Prediction Based on Integrated Dual LSTM Model. IEEE Access 2021, 9, 93285–93297. [Google Scholar] [CrossRef]
- Chiang, Y.L.; Hsieh, C.L.; Huang, H.Y.; Wang, J.C.; Chou, C.Y.; Sun, C.H.; Wen, T.H.; Juang, J.Y.; Jiang, J.A. Urban Area PM2.5. In Prediction with Machine Methods: An On-Board Monitoring System. In Proceedings of the 2018 12th International Conference on Sensing Technology (ICST), Limerick, Ireland, 4–6 December 2018; pp. 25–30. [Google Scholar] [CrossRef]
- Wu, Q.; Lin, H. Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network. Sustain. Cities Soc. 2019, 50, 101657. [Google Scholar] [CrossRef]
- Yan, R.; Liao, J.; Yang, J.; Sun, W.; Nong, M.; Li, F. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Syst. Appl. 2021, 169, 114513. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, W.; Wenzel, A.; Chen, J. Stacked ResNet-LSTM and CORAL model for multi-site air quality prediction. Neural Comput. Appl. 2022, 34, 13849–13866. [Google Scholar] [CrossRef]
- Liang, Y.; Ke, S.; Zhang, J.; Yi, X.; Zheng, Y. GeoMAN: Multi-level Attention Networks for Geo-sensory Time Series Prediction. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3428–3434. [Google Scholar] [CrossRef]
- Lin, S.; Zhao, J.; Li, J.; Liu, X.; Zhang, Y.; Wang, S.; Mei, Q.; Chen, Z.; Gao, Y. A Spatial-Temporal Causal Convolution Network Framework for Accurate and Fine-Grained PM2.5 Concentration Prediction. Entropy 2022, 24, 1125. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, X.; Xia, H. A hybrid prediction model of air quality for sparse station based on spatio-temporal feature extraction. Atmos. Pollut. Res. 2023, 14, 101765. [Google Scholar] [CrossRef]
- Huang, Y.; Ying, J.J.C.; Tseng, V.S. Spatio-attention embedded recurrent neural network for air quality prediction. Knowl.-Based Syst. 2021, 233, 107416. [Google Scholar] [CrossRef]
- Ge, L.; Wu, K.; Zeng, Y.; Chang, F.; Wang, Y.; Li, S. Multi-scale spatiotemporal graph convolution network for air quality prediction. Appl. Intell. 2021, 51, 3491–3505. [Google Scholar] [CrossRef]
- Jin, X.B.; Wang, Z.Y.; Kong, J.L.; Bai, Y.T.; Su, T.L.; Ma, H.J.; Chakrabarti, P. Deep Spatio-Temporal Graph Network with Self-Optimization for Air Quality Prediction. Entropy 2023, 25, 247. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Jin, Z.; Wang, S.; Xu, J.; Peng, Z.; Wang, R.; Shao, W.; Hui, Y. A dual-path dynamic directed graph convolutional network for air quality prediction. Sci. Total Environ. 2022, 827, 154298. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhu, Y.; Zang, T.; Liu, H.; Yu, J. Modeling Inter-Station Relationships with Attentive Temporal Graph Convolutional Network for Air Quality Prediction. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, New York, NY, USA, 8–12 March 2021; WSDM ’21. pp. 616–634. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Y.; Dong, F.; Chen, K.; Xia, H. A multi-graph spatial-temporal attention network for air-quality prediction. Process. Saf. Environ. Prot. 2024, 181, 442–451. [Google Scholar] [CrossRef]
- Han, L.; Sun, Z.; He, J.; Hao, Y.; Tang, Q.; Zhang, X.; Zheng, C.; Miao, S. Seasonal variation in health impacts associated with visibility in Beijing, China. Sci. Total Environ. 2020, 730, 139149. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Shirin, S.; Emmanouil, C.; Jamal, A. Effect of Seasonal and Meteorological Variability of Air Pollution in Singrauli Coalfield. Aerosol Sci. Eng. 2022, 6, 61–70. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Al-Naymat, G.; Chawla, S.; Taheri, J. SparseDTW: A Novel Approach to Speed up Dynamic Time Warping. arXiv 2012, arXiv:1201.2969. [Google Scholar]
- Samal, K.K.R.; Panda, A.K.; Babu, K.S.; Das, S.K. Multi-output TCN autoencoder for long-term pollution forecasting for multiple sites. Urban Clim. 2021, 39, 100943. [Google Scholar] [CrossRef]
- Zheng, C.; Fan, X.; Wang, C.; Qi, J. GMAN: A Graph Multi-Attention Network for Traffic Prediction. Proc. Aaai Conf. Artif. Intell. 2020, 34, 1234–1241. [Google Scholar] [CrossRef]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In Advances in Neural Information Processing Systems; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2016; Volume 29. [Google Scholar]
- Liu, B.C.; Binaykia, A.; Chang, P.C.; Tiwari, M.K.; Tsao, C.C. Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang. PLoS ONE 2017, 12, e0179763. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Zhang, Q.; Lam, J.C.; Li, V.O.; Han, Y. Deep-AIR: A Hybrid CNN-LSTM Framework forFine-Grained Air Pollution Forecast. arXiv 2020, arXiv:2001.11957. [Google Scholar]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, Stockholm, Sweden, 13–19 July 2018. IJCAI-2018. [Google Scholar] [CrossRef]
- Feng, Y.; Kim, J.S.; Yu, J.W.; Ri, K.C.; Yun, S.J.; Han, I.N.; Qi, Z.; Wang, X. Spatiotemporal informer: A new approach based on spatiotemporal embedding and attention for air quality forecasting. Environ. Pollut. 2023, 336, 122402. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Lin, Y.; Guo, S.; Wan, H. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, America, 7–12 February 2020; Volume 34, pp. 914–921. [Google Scholar] [CrossRef]
Environment | Configuration |
---|---|
Operating system | Ubuntu 22.04 OS |
CPU | Intel i5-13600 KF 3.5 GHZ |
GPU | NVIDIA RTX4080 16 G |
RAM | 32 G |
Hard disk | SN-850 1 TB |
Python version | 3.9.12 |
Beijing | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE |
ARIMA | 13.22 | 19.12 | 0.40 | 17.88 | 25.58 | 0.63 | 22.33 | 31.22 | 0.86 | 25.55 | 35.55 | 1.34 |
SVR | 11.48 | 16.22 | 0.37 | 15.98 | 23.88 | 0.57 | 20.22 | 28.36 | 0.83 | 23.24 | 34.22 | 1.28 |
DNN | 10.22 | 14.02 | 0.36 | 14.58 | 22.28 | 0.54 | 18.02 | 25.55 | 0.78 | 21.44 | 30.12 | 1.25 |
LSTM | 7.32 | 11.02 | 0.34 | 13.12 | 19.24 | 0.52 | 16.06 | 21.89 | 0.76 | 18.23 | 26.1 | 1.22 |
TCN | 6.96 | 10.48 | 0.32 | 12.02 | 18.28 | 0.50 | 15.55 | 21.02 | 0.74 | 17.68 | 25.22 | 1.18 |
CNN-LSTM | 6.88 | 10.52 | 0.28 | 11.24 | 17.02 | 0.46 | 14.88 | 20.23 | 0.70 | 16.56 | 23.78 | 1.18 |
STGCN | 6.22 | 9.56 | 0.27 | 10.98 | 15.22 | 0.45 | 14.22 | 19.84 | 0.68 | 16.24 | 23.65 | 1.04 |
Informer | 5.32 | 8.23 | 0.29 | 10.22 | 14.22 | 0.44 | 14.02 | 19.64 | 0.64 | 16.12 | 23.72 | 1.02 |
STSGCN | 5.63 | 8.66 | 0.26 | 10.34 | 14.31 | 0.44 | 13.88 | 19.22 | 0.63 | 15.33 | 22.12 | 0.96 |
Res-GCN | 5.30 | 7.80 | 0.24 | 9.54 | 14.05 | 0.42 | 13.25 | 18.19 | 0.61 | 15.22 | 20.97 | 0.93 |
Tianjin | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE |
ARIMA | 19.16 | 28.12 | 0.42 | 27.22 | 35.62 | 0.57 | 33.34 | 40.22 | 0.80 | 36.55 | 45.25 | 1.07 |
SVR | 16.68 | 26.34 | 0.38 | 25.66 | 34.55 | 0.53 | 31.56 | 38.32 | 0.76 | 34.46 | 43.22 | 0.98 |
DNN | 15.44 | 25.46 | 0.36 | 24.57 | 33.12 | 0.51 | 31.02 | 37.55 | 0.68 | 33.24 | 42.14 | 0.94 |
LSTM | 14.77 | 22.72 | 0.36 | 23.28 | 32.02 | 0.54 | 28.22 | 35.49 | 0.65 | 30.23 | 40.12 | 0.88 |
TCN | 14.67 | 22.62 | 0.37 | 22.88 | 31.56 | 0.51 | 27.84 | 34.89 | 0.64 | 29.47 | 38.80 | 0.84 |
CNN-LSTM | 14.44 | 22.12 | 0.35 | 22.46 | 30.11 | 0.49 | 26.58 | 33.78 | 0.62 | 29.02 | 38.56 | 0.82 |
STGCN | 13.12 | 21.12 | 0.32 | 21.58 | 29.11 | 0.49 | 25.22 | 33.42 | 0.61 | 28.34 | 38.06 | 0.84 |
Informer | 11.92 | 19.12 | 0.31 | 21.22 | 28.84 | 0.50 | 24.88 | 33.11 | 0.62 | 27.99 | 38.02 | 0.78 |
STSGCN | 11.12 | 19.26 | 0.24 | 20.42 | 28.33 | 0.45 | 24.02 | 32.88 | 0.59 | 27.12 | 37.56 | 0.72 |
Res-GCN | 11.44 | 19.02 | 0.24 | 19.88 | 28.05 | 0.44 | 23.43 | 31.82 | 0.58 | 26.99 | 36.88 | 0.70 |
Beijing | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE |
w/o DSTGCN | 11.22 | 17.76 | 0.38 | 14.24 | 22.12 | 0.60 | 21.92 | 27.78 | 0.81 | 25.64 | 34.45 | 1.12 |
w/o ResNet | 5.99 | 8.88 | 0.27 | 10.33 | 14.84 | 0.46 | 14.02 | 19.23 | 0.65 | 16.22 | 22.22 | 0.97 |
Res-GCN | 5.30 | 7.80 | 0.24 | 9.54 | 14.05 | 0.42 | 13.25 | 18.19 | 0.61 | 15.22 | 20.97 | 0.93 |
Tianjin | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE |
w/o DSTGCN | 27.88 | 38.88 | 0.42 | 30.24 | 45.23 | 0.62 | 36.92 | 49.78 | 0.73 | 41.64 | 55.45 | 0.94 |
w/o ResNet | 12.22 | 21.34 | 0.25 | 21.02 | 29.88 | 0.48 | 25.24 | 33.23 | 0.61 | 28.83 | 38.96 | 0.74 |
Res-GCN | 11.44 | 19.02 | 0.24 | 19.88 | 28.05 | 0.44 | 23.43 | 31.82 | 0.58 | 26.99 | 36.88 | 0.70 |
Beijing | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE |
Euclidean distance (static) | 5.88 | 9.12 | 0.27 | 9.99 | 14.84 | 0.45 | 13.66 | 18.76 | 0.65 | 15.46 | 22.02 | 0.97 |
Pearson | 5.66 | 8.98 | 0.26 | 9.82 | 14.28 | 0.43 | 13.32 | 18.44 | 0.63 | 15.22 | 21.44 | 0.95 |
Spearman | 5.72 | 8.77 | 0.26 | 9.77 | 14.22 | 0.44 | 13.34 | 18.56 | 0.63 | 15.34 | 21.76 | 0.94 |
SDTW | 5.30 | 7.80 | 0.24 | 9.54 | 14.05 | 0.42 | 13.25 | 18.19 | 0.61 | 15.22 | 20.97 | 0.93 |
Tianjin | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE | MAE | RMSE | MAPE |
Euclidean distance (static) | 12.02 | 20.23 | 0.26 | 21.10 | 29.02 | 0.47 | 24.22 | 33.07 | 0.61 | 28.18 | 38.12 | 0.74 |
Pearson | 11.64 | 19.53 | 0.25 | 20.16 | 28.45 | 0.46 | 24.02 | 32.48 | 0.59 | 27.42 | 37.54 | 0.73 |
Spearman | 11.67 | 19.42 | 0.25 | 20.12 | 28.66 | 0.45 | 23.89 | 32.56 | 0.59 | 27.44 | 37.66 | 0.72 |
SDTW | 11.44 | 19.02 | 0.24 | 19.88 | 28.05 | 0.44 | 23.43 | 31.82 | 0.58 | 26.99 | 36.88 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, H.; Chen, X.; Wang, Z.; Chen, X.; Dong, F. A Multi-Modal Deep-Learning Air Quality Prediction Method Based on Multi-Station Time-Series Data and Remote-Sensing Images: Case Study of Beijing and Tianjin. Entropy 2024, 26, 91. https://doi.org/10.3390/e26010091
Xia H, Chen X, Wang Z, Chen X, Dong F. A Multi-Modal Deep-Learning Air Quality Prediction Method Based on Multi-Station Time-Series Data and Remote-Sensing Images: Case Study of Beijing and Tianjin. Entropy. 2024; 26(1):91. https://doi.org/10.3390/e26010091
Chicago/Turabian StyleXia, Hanzhong, Xiaoxia Chen, Zhen Wang, Xinyi Chen, and Fangyan Dong. 2024. "A Multi-Modal Deep-Learning Air Quality Prediction Method Based on Multi-Station Time-Series Data and Remote-Sensing Images: Case Study of Beijing and Tianjin" Entropy 26, no. 1: 91. https://doi.org/10.3390/e26010091
APA StyleXia, H., Chen, X., Wang, Z., Chen, X., & Dong, F. (2024). A Multi-Modal Deep-Learning Air Quality Prediction Method Based on Multi-Station Time-Series Data and Remote-Sensing Images: Case Study of Beijing and Tianjin. Entropy, 26(1), 91. https://doi.org/10.3390/e26010091