Finite-Time H∞ Controllers Design for Stochastic Time-Delay Markovian Jump Systems with Partly Unknown Transition Probabilities
Abstract
:1. Introduction
2. System Description and Preliminary Knowledge
3. Finite-Time State Feedback Control
3.1. State Feedback Controller
3.2. Main Results
4. Finite-Time Observer-Based State Feedback Control
4.1. Observer-Based State Feedback Controller
4.2. Main Results
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Karimi, H.R.; Yu, J. Passivity-based robust sliding mode synthesis for uncertain delayed stochastic systems via state observer. Automatica 2020, 111, 108596. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Liu, X. H- index for discrete-time stochastic systems with Markovian jump and multiplicative noise. Automatica 2018, 90, 286–293. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Li, Y. H- index for continuous-time stochastic systems with Markovian jump and multiplicative noise. Automatica 2019, 105, 167–178. [Google Scholar] [CrossRef]
- Yang, H.; Yin, S.; Kaynak, O. Neural network-based adaptive fault-tolerant control for Markovian jump systems with nonlinearity and actuator faults. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 3687–3698. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Zhang, X.; Yang, C. Asynchronous filtering for delayed Markovian jump systems via homogeneous polynomial approach. IEEE Trans. Autom. Control. 2019, 65, 2163–2170. [Google Scholar] [CrossRef]
- Ren, J.; He, G.; Fu, J. Robust H∞ sliding mode control for nonlinear stochastic T-S fuzzy singular Markovian jump systems with time-varying delays. Inf. Sci. 2020, 535, 42–63. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Gao, C. Robust H∞ sliding mode control for uncertain discrete singular T-S fuzzy Markov jump systems. Asian J. Control. 2023, 25, 524–536. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, X. Fault detection filters design of polytopic uncertain discrete-time singular Markovian jump systems with time-varying delays. J. Frankl. Inst. 2020, 357, 7343–7367. [Google Scholar] [CrossRef]
- Wang, G.; Xu, L. Almost sure stability and stabilization of Markovian jump systems with stochastic switching. IEEE Trans. Autom. Control. 2021, 67, 1529–1536. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Lu, D. Stability and stabilization analysis of Markovian jump systems with generally bounded transition probabilities. J. Frankl. Inst. 2020, 357, 8416–8434. [Google Scholar] [CrossRef]
- Liu, X.; Zhuang, J.; Li, Y. H∞ filtering for Markovian jump linear systems with uncertain transition probabilities. Int. J. Control. Autom. Syst. 2021, 19, 2500–2510. [Google Scholar] [CrossRef]
- Pan, S.; Zhou, J.; Ye, Z. Event-triggered dynamic output feedback control for networked Markovian jump systems with partly unknown transition rates. Math. Comput. Simul. 2021, 181, 539–561. [Google Scholar] [CrossRef]
- Su, X.; Wang, C.; Chang, H.; Yang, Y.; Assawinchaichote, W. Event-triggered sliding mode control of networked control systems with Markovian jump parameters. Automatica 2021, 125, 109405. [Google Scholar] [CrossRef]
- Shen, A.; Li, L.; Li, C. H∞ filtering for discrete-time singular Markovian jump systems with generally uncertain transition rates. Circuits, Syst. Signal Process. 2021, 40, 3204–3226. [Google Scholar] [CrossRef]
- Park, C.; Kwon, N.K.; Park, I.S.; Park, P. H∞ filtering for singular Markovian jump systems with partly unknown transition rates. Automatica 2019, 109, 108528. [Google Scholar] [CrossRef]
- Xue, M.; Yan, H.; Zhang, H.; Li, Z.; Chen, S.; Chen, C. Event-triggered guaranteed cost controller design for T-S fuzzy Markovian jump systems with partly unknown transition probabilities. IEEE Trans. Fuzzy Syst. 2020, 29, 1052–1064. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Wu, A. H∞ control for discrete-time Markovian jump linear systems with partially uncertain transition probabilities. Optim. Control. Appl. Methods 2020, 41, 1796–1809. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Jiang, B. Neural network-based adaptive reliable control for nonlinear Markov jump systems against actuator attacks. Nonlinear Dyn. 2023, 111, 13985–13999. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, X.; Liu, Y.; Zhao, Z.; Zhang, R.; Zhang, C. Disturbance observer-based finite-time braking control of vehicular platoons. IEEE Trans. Intell. Veh. 2023. [Google Scholar] [CrossRef]
- Hamrah, R.; Sanyal, A.K.; Viswanathan, S.P. Discrete finite-time stable attitude tracking control of unmanned vehicles on SO(3). In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 824–829. [Google Scholar] [CrossRef]
- Zhao, J.; Qiu, L.; Xie, X.; Sun, Z. Finite-time stabilization of stochastic nonlinear systems and its applications in ship maneuvering systems. IEEE Trans. Fuzzy Syst. 2023, 32, 1023–1035. [Google Scholar] [CrossRef]
- Dorato, P. Short-Time Stability in Linear Time-Varying Systems. Ph. D. Thesis, Polytechnic Institute of Brooklyn, Brooklyn, NY, USA, 1961. [Google Scholar]
- Ren, C.; He, S. Finite-time stabilization for positive Markovian jumping neural networks. Appl. Math. Comput. 2020, 365, 124631. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, T. Finite-time boundedness and chaos-like dynamics of a class of Markovian jump linear systems. J. Frankl. Inst. 2020, 357, 2083–2098. [Google Scholar] [CrossRef]
- Chen, Q.; Tong, D.; Zhou, W. Finite-time stochastic boundedness for Markovian jumping systems via the sliding mode control. J. Frankl. Inst. 2022, 359, 4678–4698. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, W.; Feng, L. Finite-time stability and asynchronous resilient control for Itô stochastic semi-Markovian jump systems. J. Frankl. Inst. 2022, 359, 1531–1557. [Google Scholar] [CrossRef]
- Sang, H.; Wang, P.; Zhao, Y.; Nie, H.; Fu, J. Input-output finite-time stability for switched T-S fuzzy delayed systems with time-dependent Lyapunov-Krasovskii functional approach. IEEE Trans. Fuzzy Syst. 2023, 31, 3823–3837. [Google Scholar] [CrossRef]
- Kaviarasan, B.; Kwon, O.; Park, M.J.; Sakthivel, R. Input-output finite-time stabilization of T-S fuzzy systems through quantized control strategy. IEEE Trans. Fuzzy Syst. 2021, 30, 3589–3600. [Google Scholar] [CrossRef]
- Hu, X.; Wang, L.; Sheng, Y.; Hu, J. Finite-time stabilization of fuzzy spatiotemporal competitive neural networks with hybrid time-varying delays. IEEE Trans. Fuzzy Syst. 2023, 31, 3015–3024. [Google Scholar] [CrossRef]
- Li, X.; Ho, D.W.; Cao, J. Finite-time stability and settling-time estimation of nonlinear impulsive systems. Automatica 2019, 99, 361–368. [Google Scholar] [CrossRef]
- Yang, X.; Li, X. Finite-time stability of nonlinear impulsive systems with applications to neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 243–251. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, F.; Shi, P. Non-fragile finite-time stabilization for discrete mean-field stochastic systems. IEEE Trans. Autom. Control. 2023, 68, 6423–6430. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Q.; Li, Y. Finite-time guaranteed cost control for uncertain mean-field stochastic systems. J. Frankl. Inst. 2020, 357, 2813–2829. [Google Scholar] [CrossRef]
- Liu, X.; Teng, Y.; Li, Y. A design proposal of finite-time H∞ controller for stochastic mean-field systems. Asian J. Control. 2024. [Google Scholar] [CrossRef]
- Sun, X.; Yang, D.; Zong, G. Annular finite-time H∞ control of switched fuzzy systems: A switching dynamic event-triggered control approach. Nonlinear Anal. Hybrid Syst. 2021, 41, 101050. [Google Scholar] [CrossRef]
- Zhu, C.; Li, X.; Cao, J. Finite-time H∞ dynamic output feedback control for nonlinear impulsive switched systems. Nonlinear Anal. Hybrid Syst. 2021, 39, 100975. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, F.; Chen, X.; Qiu, J. Observer-based finite-time H∞ control of Itô -type stochastic nonlinear systems. Asian J. Control. 2023, 25, 2378–2387. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C. Observer-based finite-time H∞ control of discrete-time Markovian jump systems. Appl. Math. Model. 2013, 37, 3748–3760. [Google Scholar] [CrossRef]
- Gao, X.; Ren, H.; Deng, F.; Zhou, Q. Observer-based finite-time H∞ control for uncertain discrete-time nonhomogeneous Markov jump systems. J. Frankl. Inst. 2019, 356, 1730–1749. [Google Scholar] [CrossRef]
- Mu, X.; Li, X.; Fang, J.; Wu, X. Reliable observer-based finite-time H∞ control for networked nonlinear semi-Markovian jump systems with actuator fault and parameter uncertainties via dynamic event-triggered scheme. Inf. Sci. 2021, 546, 573–595. [Google Scholar] [CrossRef]
- He, Q.; Xing, M.; Gao, X.; Deng, F. Robust finite-time H∞ synchronization for uncertain discrete-time systems with nonhomogeneous Markovian jump: Observer-based case. Int. J. Robust Nonlinear Control. 2020, 30, 3982–4002. [Google Scholar] [CrossRef]
- Liu, X.; Wei, X.; Li, Y. Observer-based finite-time fuzzy H∞ control for Markovian jump systems with time-delay and multiplicative noises. Int. J. Fuzzy Syst. 2023, 25, 1643–1655. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Wang, J.; Li, Y. Robust finite-time stability for uncertain discrete-time stochastic nonlinear systems with time-varying delay. Entropy 2022, 24, 828. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Liu, N.; Liu, X.; Li, Y. Observer-based finite-time H∞ control for discrete-time Markovian jump systems with time-delays. J. Shandong Univ. Technol. Nat. Sci. Ed. 2022, 36, 17–27. [Google Scholar] [CrossRef]
Acronyms | Meaning of Acronyms |
---|---|
MJS | Markovian jump system |
SFT | Stochastic finite-time |
LKF | Lyapunov–Krasovskii functional |
CLS | Closed-loop system |
LMI | Linear matrix inequality |
TP | Transition probability |
Method | Theorem 4 in This Paper | Theorem 2 in Reference [44] |
---|---|---|
9.6193 | 105.9526 | |
28.5424 | 150.4146 | |
121.0731 | 11,376.368 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Li, Y.; Liu, X. Finite-Time H∞ Controllers Design for Stochastic Time-Delay Markovian Jump Systems with Partly Unknown Transition Probabilities. Entropy 2024, 26, 292. https://doi.org/10.3390/e26040292
Guo X, Li Y, Liu X. Finite-Time H∞ Controllers Design for Stochastic Time-Delay Markovian Jump Systems with Partly Unknown Transition Probabilities. Entropy. 2024; 26(4):292. https://doi.org/10.3390/e26040292
Chicago/Turabian StyleGuo, Xinye, Yan Li, and Xikui Liu. 2024. "Finite-Time H∞ Controllers Design for Stochastic Time-Delay Markovian Jump Systems with Partly Unknown Transition Probabilities" Entropy 26, no. 4: 292. https://doi.org/10.3390/e26040292
APA StyleGuo, X., Li, Y., & Liu, X. (2024). Finite-Time H∞ Controllers Design for Stochastic Time-Delay Markovian Jump Systems with Partly Unknown Transition Probabilities. Entropy, 26(4), 292. https://doi.org/10.3390/e26040292