Bootstrap Approximation of Model Selection Probabilities for Multimodel Inference Frameworks
Abstract
:1. Introduction
2. Akaike Weights
2.1. Background
2.2. Akaike Weights vs. Model Probabilities
3. Bootstrap Model Frequencies
3.1. Model Frequencies as Multinomial Probability Vector Approximations
3.2. Bias Induced from Bootstrapping Fitted Likelihoods
3.3. Bootstrap Approximation of Model Selection Probabilities
3.4. Akaike Weights vs. Bootstrap Model Frequencies: Simulation
3.5. More Complex Simulation Scenarios
3.6. Bootstrap-Based Multimodel Estimates and Confidence Intervals
- (1)
- Obtain a bootstrap sample denoted as .
- (2)
- Fit each of the candidate models to the bootstrap sample.
- (3)
- Identify the model that corresponds to the minimum information criterion value. In other words, choose model such that
- (4)
- Record , the maximum likelihood estimate (MLE) of each corresponding to the covariates represented in the model selected from step 3. The MLEs for unselected variables are set to zero.
- (5)
- Repeat the aforementioned steps B times.
4. Application in Biomedicine: Sulindac for the Treatment of Colonic and Rectal Ademonams in Patients with Familial Adenomatous Polyposis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Breiman, L. The Little Bootstrap and Other Methods for Dimensionality Selection in Regression: X-fixed Prediction Error. J. Am. Stat. Assoc. 1992, 87, 738–754. [Google Scholar] [CrossRef]
- Montgomery, J.M.; Nyhan, B. Bayesian Model Averaging: Theoretical Developments and Practical Applications. Polit. Anal. 2010, 18, 245–270. [Google Scholar] [CrossRef]
- Heinze, G.; Wallisch, C.; Dunkler, D. Variable Selection—A Review and Recommendations for the Practicing Statistician. Biom. J. 2018, 60, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Sauerbrei, W.; Perperoglou, A.; Schmid, M.; Abrahamowicz, M.; Becher, H.; Binder, H.; Dunkler, D.; Harrell, F.; Royston, P.; Heinze, G. State of the Art in Selection of Variables and Functional Forms in Multivariable Analysis-Outstanding Issues. Diagn. Progn. Res. 2020, 4, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Derksen, S.; Keselman, H.J.D. Backward, Forward and Stepwise Automated Subset Selection Algorithms: Frequency of Obtaining Authentic and Noise Variables. Br. J. Math. Stat. Psychol. 1992, 45, 265–282. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Neath, A.A.; Cavanaugh, J.E. The Bayesian information criterion: Background, derivation, and applications. WIREs Comput. Stat. 2012, 4, 199–203. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Dajles, A.; Cavanaugh, J.E. Probabilistic Pairwise Model Comparisons Based on Bootstrap Estimators of the Kullback-Leibler Discrepancy. Entropy 2022, 24, 1483. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, M.; Sakamoto, Y.; Kitagawa, G. Bootstrapping log likelihood and EIC, an extension of AIC. Ann. Inst. Stat. Math. 1997, 49, 411–434. [Google Scholar] [CrossRef]
- Efron, B. Estimation and Accuracy After Model Selection. J. Am. Stat. Assoc. 2014, 109, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Dinarvand, P.; Davaro, E.P.; Doan, J.V.; Ising, M.E.; Evans, N.R.; Phillips, N.J.; Lai, J.; Guzman, M.A. Familial Adenomatous Polyposis Syndrome: An Update and Review of Extraintestinal Manifestations. Arch. Path. Lab. 2019, 143, 1382–1398. [Google Scholar] [CrossRef] [PubMed]
- Chintalacheruvu, L.; Shaw, T.; Buddam, A.; Diab, O.; Kassim, T.; Mukherjee, S.; Lynch, H. Major Hereditary Gastrointestinal Cancer Syndromes: A Narrative Review. J. Gastrointestin. Liver Dis. 2017, 26, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Chittleborough, T.J.; Warrier, S.K.; Heriot, A.G.; Kalady, M.; Church, J. Dispelling Misconceptions in the Management of Familial Adenomatous Polyposis. ANZ J. Surg. 2017, 87, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Giardiello, F.M.; Hamilton, S.R.; Krush, A.J.; Piantadosi, S.; Hylind, L.M.; Celano, P.; Booker, S.V.; Robinson, C.R.; Offerhaus, G.J. Treatment of Colonic and Rectal Adenomas with Sulindac in Familial Adenomatous Polyposis. N. Engl. J. Med. 1993, 328, 1313–1316. [Google Scholar] [CrossRef] [PubMed]
- Higgins, P. Medicaldata: Data Package for Medical Datasets—R Package Version 0.2.0. 2021. Available online: https://CRAN.R-project.org/package=medicaldata (accessed on 9 September 2023).
AIC-Based BMF | Akaike Weight | |
---|---|---|
M0 | 0.7566 | 0.6166 |
M1 | 0.2434 | 0.3833 |
Sample Size: N = 1000 | |||||
---|---|---|---|---|---|
x1 | x2 | x3 | BMF | Weights | Probabilities |
1 | 1 | 1 | 0.26 | 0.41 | 0.23 |
1 | 1 | 0 | 0.74 | 0.59 | 0.77 |
1 | 0 | 1 | 0.00 | 0.00 | 0.00 |
1 | 0 | 0 | 0.00 | 0.00 | 0.00 |
0 | 1 | 1 | 0.00 | 0.00 | 0.00 |
0 | 1 | 0 | 0.00 | 0.00 | 0.00 |
0 | 0 | 1 | 0.00 | 0.00 | 0.00 |
0 | 0 | 0 | 0.00 | 0.00 | 0.00 |
Sample Size: N = 100 | |||||
x1 | x2 | x3 | BMF | Weights | Probabilities |
1 | 1 | 1 | 0.25 | 0.38 | 0.15 |
1 | 1 | 0 | 0.75 | 0.62 | 0.85 |
1 | 0 | 1 | 0.00 | 0.00 | 0.00 |
1 | 0 | 0 | 0.00 | 0.00 | 0.00 |
0 | 1 | 1 | 0.00 | 0.00 | 0.00 |
0 | 1 | 0 | 0.00 | 0.00 | 0.00 |
0 | 0 | 1 | 0.00 | 0.00 | 0.00 |
0 | 0 | 0 | 0.00 | 0.00 | 0.00 |
Sample Size: N = 20 | |||||
x1 | x2 | x3 | BMF | Weights | Probabilities |
1 | 1 | 1 | 0.28 | 0.40 | 0.21 |
1 | 1 | 0 | 0.69 | 0.60 | 0.79 |
1 | 0 | 0 | 0.02 | 0.00 | 0.00 |
1 | 0 | 1 | 0.01 | 0.00 | 0.00 |
0 | 1 | 1 | 0.00 | 0.00 | 0.00 |
0 | 1 | 0 | 0.00 | 0.00 | 0.00 |
0 | 0 | 1 | 0.00 | 0.00 | 0.00 |
0 | 0 | 0 | 0.00 | 0.00 | 0.00 |
Sample Size: N = 1000 | |||||
---|---|---|---|---|---|
x1 | x2 | x3 | BMF | Weights | Probabilities |
1 | 1 | 1 | 0.24 | 0.40 | 0.22 |
1 | 1 | 0 | 0.76 | 0.60 | 0.78 |
1 | 0 | 1 | 0.00 | 0.00 | 0.00 |
1 | 0 | 0 | 0.00 | 0.00 | 0.00 |
0 | 1 | 1 | 0.00 | 0.00 | 0.00 |
0 | 1 | 0 | 0.00 | 0.00 | 0.00 |
0 | 0 | 1 | 0.00 | 0.00 | 0.00 |
0 | 0 | 0 | 0.00 | 0.00 | 0.00 |
Sample Size: N = 100 | |||||
x1 | x2 | x3 | BMF | Weights | Probabilities |
1 | 1 | 1 | 0.22 | 0.38 | 0.18 |
1 | 1 | 0 | 0.77 | 0.62 | 0.82 |
1 | 0 | 1 | 0.00 | 0.00 | 0.00 |
1 | 0 | 0 | 0.00 | 0.00 | 0.00 |
0 | 1 | 1 | 0.00 | 0.00 | 0.00 |
0 | 1 | 0 | 0.00 | 0.00 | 0.00 |
0 | 0 | 1 | 0.00 | 0.00 | 0.00 |
0 | 0 | 0 | 0.00 | 0.00 | 0.00 |
Sample Size: N = 20 | |||||
x1 | x2 | x3 | BMF | Weights | Probabilities |
1 | 1 | 1 | 0.17 | 0.40 | 0.19 |
1 | 1 | 0 | 0.46 | 0.60 | 0.81 |
1 | 0 | 1 | 0.05 | 0.00 | 0.00 |
1 | 0 | 0 | 0.14 | 0.00 | 0.00 |
0 | 1 | 1 | 0.03 | 0.00 | 0.00 |
0 | 1 | 0 | 0.05 | 0.00 | 0.00 |
0 | 0 | 1 | 0.04 | 0.00 | 0.00 |
0 | 0 | 0 | 0.04 | 0.00 | 0.00 |
Treatment | Sex | Age | Interaction | Weights | Unadjusted | Adjusted |
---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0.464 | 0.656 | 0.668 |
1 | 1 | 0 | 1 | 0.183 | 0.123 | 0.075 |
1 | 1 | 1 | 0 | 0.171 | 0.070 | 0.050 |
1 | 0 | 0 | 0 | 0.073 | 0.073 | 0.162 |
1 | 1 | 1 | 1 | 0.068 | 0.051 | 0.021 |
1 | 0 | 1 | 0 | 0.039 | 0.025 | 0.021 |
0 | 1 | 0 | 0 | 0.001 | 0.000 | 0.000 |
0 | 1 | 1 | 0 | 0.000 | 0.000 | 0.001 |
0 | 0 | 1 | 0 | 0.000 | 0.002 | 0.002 |
0 | 0 | 0 | 0 | 0.000 | 0.000 | 0.000 |
Adjusted | Unadjusted | |||
---|---|---|---|---|
Variable | Smoothed Estimates | Smoothed CIs | Smoothed Estimates | Smoothed CIs |
treatment | −0.4609 | (−0.6322, −0.2896) | −0.4473 | (−0.6567, −0.2379) |
sex | 0.2498 | (0.0122, 0.4874) | 0.2773 | (0.0101, 0.5444) |
age | 0.0009 | (−0.0050, 0.0068) | 0.0012 | (−0.0077, 0.0102) |
interaction | −0.0205 | (−0.1846, 0.1436) | −0.0348 | (−0.2824, 0.2127) |
Confidence Interval Lengths | ||
---|---|---|
Variable | Adjusted | Unadjusted |
treatment | 0.3427 | 0.4188 |
sex | 0.4752 | 0.5343 |
age | 0.0118 | 0.0180 |
interaction | 0.3282 | 0.4951 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dajles, A.; Cavanaugh, J. Bootstrap Approximation of Model Selection Probabilities for Multimodel Inference Frameworks. Entropy 2024, 26, 599. https://doi.org/10.3390/e26070599
Dajles A, Cavanaugh J. Bootstrap Approximation of Model Selection Probabilities for Multimodel Inference Frameworks. Entropy. 2024; 26(7):599. https://doi.org/10.3390/e26070599
Chicago/Turabian StyleDajles, Andres, and Joseph Cavanaugh. 2024. "Bootstrap Approximation of Model Selection Probabilities for Multimodel Inference Frameworks" Entropy 26, no. 7: 599. https://doi.org/10.3390/e26070599
APA StyleDajles, A., & Cavanaugh, J. (2024). Bootstrap Approximation of Model Selection Probabilities for Multimodel Inference Frameworks. Entropy, 26(7), 599. https://doi.org/10.3390/e26070599