Entropies in Electric Circuits
Abstract
:1. Introduction
1.1. Network Entropy
1.2. Thermal Entropy in One Resistor
1.3. Literature Review of Thermal Entropy in Two Resistors
1.4. Degradation
1.5. Literature Gap and Paper Structure
2. Materials and Methods
3. Results
3.1. Entropy in Two Parallel Resistors
3.2. Entropy in Series Resistors
3.3. Tree Shape Networks
3.4. Circuits with More than One Source
3.5. Time Dependent Entropy in an R-C System
3.6. Time-Dependent Entropy for Degradation
4. Discussion
My greatest concern was what to call it. I thought of calling it ‘information’, but the word was overly used, so I decided to call it ‘uncertainty’. When I discussed it with John von Neumann, he had a better idea. Von Neumann told me, ‘You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, no one really knows what entropy really is, so in a debate you will always have the advantage’.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bejan, A. Thermodynamics today. Energy 2018, 160, 1208–1219. [Google Scholar] [CrossRef]
- Harsha, N.R.S.; Prakash, A.; Kothari, D.P. The Foundations of Electric Circuit Theory; IOP Publishing Ltd.: Bristol, UK, 2016; ISBN 9780750312660. [Google Scholar]
- Županović, P.; Juretić, D.; Botrić, S. Kirchhoff’s loop law and the maximum entropy production principle. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2004, 70, 056108. [Google Scholar] [CrossRef] [PubMed]
- Martyushev, L.M.; Seleznev, V.D. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 2006, 426, 1–45. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R.B.; Sands, M.L. The Feynman Lectures on Physics; Basic Books: New York, NY, USA, 2010; ISBN 9780465023820. [Google Scholar]
- Miranda, E.N.; Nikolskaia, S. Producción de entropía en circuitos eléctricos sencillos entropy production by simple electrical circuits. arXiv 2004, arXiv:1210.0850. [Google Scholar] [CrossRef]
- Ng, S.K. Information and system modelling. Math. Comput. Model. 1996, 23, 1–15. [Google Scholar]
- Jaynes, E.T. Probability Theory: The Logic of Science; Bretthorst, G.L., Ed.; Cambridge University Press: Cambridge, UK, 2003; ISBN 0521592712. [Google Scholar]
- Doyle, P.G.; Snell, J.L. Random Walks and Electric Networks; The Mathematical Association of America, Inc.: Washington, DC, USA, 1984. [Google Scholar]
- Roy, R. Ohm’s Law, Kirchoff’s Law and the Drunkard’s Walk 2. The Drunkard’s Walk. Resonance 1997, 2, 33–38. [Google Scholar] [CrossRef]
- Roy, R. Ohm’s law, Kirchoff’s law and the Drunkard’s Walk: 1. Related electrical networks. Resonance 1997, 2, 36–47. [Google Scholar] [CrossRef]
- Nachmias, A. Random Walks and Electric Networks. In Planar Maps, Random Walks and Circle Packing; Lecture Notes in Mathematics; Springer: Cham, Switzerland, 2020; Volume 2243, pp. 11–31. [Google Scholar]
- Perelson, A.S. Network thermodynamics. An overview. Biophys. J. 1975, 15, 667–685. [Google Scholar] [CrossRef]
- Li, X.; Wei, M. Graph Entropy: Recent Results and Perspectives. Math. Found. Appl. Graph Entropy 2016, 6, 133–182. [Google Scholar]
- Dehmer, M.; Mowshowitz, A. A history of graph entropy measures. Inf. Sci. 2011, 181, 57–78. [Google Scholar] [CrossRef]
- Anand, K.; Bianconi, G. Entropy measures for networks: Toward an information theory of complex topologies. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2009, 80, 045102. [Google Scholar] [CrossRef]
- Caravelli, F. Trajectories entropy in dynamical graphs with memory. Front. Robot. AI 2016, 3, 179782. [Google Scholar] [CrossRef]
- Liu, C.; Ma, Y.; Zhao, J.; Nussinov, R.; Zhang, Y.C.; Cheng, F.; Zhang, Z.K. Computational network biology: Data, models, and applications. Phys. Rep. 2020, 846, 1–66. [Google Scholar] [CrossRef]
- Zhu, J.; Wei, D. Analysis of stock market based on visibility graph and structure entropy. Phys. A Stat. Mech. Its Appl. 2021, 576, 126036. [Google Scholar] [CrossRef]
- Gupta, S.; Yadav, V.K.; Singh, M. Optimal Allocation of Capacitors in Radial Distribution Networks Using Shannon’s Entropy. IEEE Trans. Power Deliv. 2022, 37, 2245–2255. [Google Scholar] [CrossRef]
- Cheng, L.; Bi, C.; Kang, Q.; He, J.; Ma, X.; Zhao, L. Study on Entropy Characteristics of Buck-Boost Converter with Switched Capacitor Network. In Proceedings of the 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Chengdu, China, 18–21 July 2021; pp. 136–139. [Google Scholar]
- Freitas, N.; Delvenne, J.C.; Esposito, M. Stochastic and Quantum Thermodynamics of Driven RLC Networks. Phys. Rev. X 2020, 10, 31005. [Google Scholar] [CrossRef]
- Lebon, G.; Jou, D.; Casas-Vázquez, J. Understanding Non-Equilibrium Thermodynamics: Foundations, Applications, Frontiers; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 9783540742517. [Google Scholar]
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics From Heat Engines to Dissipative Structures British Library Cataloguing in Publication Data; John Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Bejan, A. Advanced Engineering Thermodynamics; Wiley: Hoboken, NJ, USA, 2006; Volume 2. [Google Scholar]
- Herrmann, F. Simple examples of the theorem of minimum entropy production. Eur. J. Phys. 1986, 7, 130–131. [Google Scholar] [CrossRef]
- Christen, T. Application of the maximum entropy production principle to electrical systems. J. Phys. D Appl. Phys. 2006, 39, 4497–4503. [Google Scholar] [CrossRef]
- Sree Harsha, N.R. A review of the variational methods for solving DC circuits. Eur. J. Phys. 2019, 40, 033001. [Google Scholar] [CrossRef]
- Bruers, S.; Maes, C.; Netočný, K. On the validity of entropy production principles for linear electrical circuits. J. Stat. Phys. 2007, 129, 725–740. [Google Scholar] [CrossRef]
- Rebhan, E. Generalizations of the theorem of minimum entropy production to linear systems involving inertia. Phys. Rev. A 1985, 32, 581–589. [Google Scholar] [CrossRef]
- Basaran, C.; Yan, C. Damage Mechanics of Solder Joints. J. Electron. Packag. 1998, 120, 379–384. [Google Scholar] [CrossRef]
- Basaran, C.; Nie, S. A thermodynamics based damage mechanics model for particulate composites. Int. J. Solids Struct. 2007, 44, 1099–1114. [Google Scholar] [CrossRef]
- Naderi, M.; Amiri, M.; Khonsari, M.M. On the thermodynamic entropy of fatigue fracture. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 423–438. [Google Scholar] [CrossRef]
- Cuadras, A.; Crisóstomo, J.; Ovejas, V.J.V.J.; Quilez, M. Irreversible entropy model for damage diagnosis in resistors. J. Appl. Phys. 2015, 118, 2016. [Google Scholar] [CrossRef]
- Cuadras, A.; Romero, R.; Ovejas, V.J.V.J. Entropy characterisation of overstressed capacitors for lifetime prediction. J. Power Sources 2016, 336, 272–278. [Google Scholar] [CrossRef]
- Cuadras, A.; Yao, J.; Quilez, M. Determination of LEDs degradation with entropy generation rate. J. Appl. Phys. 2017, 122, 145702. [Google Scholar] [CrossRef]
- Rico, A.; Ovejas, V.J.; Cuadras, A. Analysis of energy and entropy balance in a residential building. J. Clean. Prod. 2021, 333, 130145. [Google Scholar] [CrossRef]
- Cuadras, A.; Miró, P.; Ovejas, V.J.; Estrany, F. Entropy generation model to estimate battery ageing. J. Energy Storage 2020, 32, 101740. [Google Scholar] [CrossRef]
- Basaran, C. Introduction to Unified Mechanics Theory with Applications; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Landauer, R. Stability and entropy production in electrical circuits. J. Stat. Phys. 1975, 13, 1–16. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Nalewajski, R.F. Complex entropy and resultant information measures. J. Math. Chem. 2016, 54, 1777–1782. [Google Scholar] [CrossRef]
- Qian, G.; Iu, H.H.C.; Wang, S. Complex Shannon Entropy Based Learning Algorithm and Its Applications. IEEE Trans. Veh. Technol. 2021, 70, 9673–9684. [Google Scholar] [CrossRef]
- Reis, A.H. Constructal theory: From engineering to physics, and how flow systems develop shape and structure. Appl. Mech. Rev. 2006, 59, 269–282. [Google Scholar] [CrossRef]
- Zemansky, M.W.; Dittman, R.H. Heat and Thermodynamics; McGraw-Hill: New York, NY, USA, 1990. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuadras, A.; Ovejas, V.J.; Martínez-García, H. Entropies in Electric Circuits. Entropy 2025, 27, 73. https://doi.org/10.3390/e27010073
Cuadras A, Ovejas VJ, Martínez-García H. Entropies in Electric Circuits. Entropy. 2025; 27(1):73. https://doi.org/10.3390/e27010073
Chicago/Turabian StyleCuadras, Angel, Victoria J. Ovejas, and Herminio Martínez-García. 2025. "Entropies in Electric Circuits" Entropy 27, no. 1: 73. https://doi.org/10.3390/e27010073
APA StyleCuadras, A., Ovejas, V. J., & Martínez-García, H. (2025). Entropies in Electric Circuits. Entropy, 27(1), 73. https://doi.org/10.3390/e27010073