The Use of Infrared Thermography (IRT) in Burns Depth Assessment: A Diagnostic Accuracy Meta-Analysis
Abstract
:1. Introduction
2. Methodology
2.1. Design
2.2. Criteria for Considering Studies for This Review
2.2.1. Type of Studies
2.2.2. Participants
2.2.3. Target Condition
2.2.4. Index Test
2.2.5. Reference Standards
2.3. Search Methods for Identification of Studies
2.4. Data Collection and Analysis
2.4.1. Selection of Studies
2.4.2. Data Extraction
- Article (author, year and journal of publication)
- Study design (sample size, type of study)
- Study population and demographics (age, gender)
- Reference standard (clinical assessment and follow-up to assess wound healing)
- Index test (IRT Imaging) and its interpretations
- Quality assessment of the included studies using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool
- Data for two-by-two contingency tables (absolute numbers of true positives, false positives, true negatives, false negatives, positive predictive value, negative predictive value, sensitivity, specificity).
2.5. Assessment of Methodological Quality
Statistical Analysis and Data Synthesis
3. Results
3.1. Results of the Search
3.2. Characteristics of Included Studies
3.3. Methodological Quality of Included Studies
3.4. Findings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- A Multimodality Imaging and Software System for Combining an Anatomical and Physiological Assessment of Skin and Underlying Tissue Conditions. Available online: https://journals.lww.com/aswcjournal/Fulltext/2016/04000/A_Multimodality_Imaging_and_Software_System_for.3.aspx (accessed on 25 July 2021).
- Thermography-Ryan-1969-Australasian Radiology-Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/j.1440-1673.1969.tb01210.x (accessed on 25 July 2021).
- Assessment of Burn Depth and Burn Wound Healing Potential-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0305417908000417?via%3Dihub (accessed on 25 July 2021).
- Enhanced Tumor Treatment Using Biofunctional Indocyanine Green-Containing Nanostructure by Intratumoral or Intravenous Injection|Molecular Pharmaceutics. Available online: https://pubs.acs.org/doi/10.1021/mp200526m (accessed on 25 July 2021).
- Saxena, V.; Sadoqi, M.; Shao, J. Degradation Kinetics of Indocyanine Green in Aqueous Solution. J. Pharm. Sci. 2003, 92, 2090–2097. [Google Scholar] [CrossRef]
- Still, J.M.; Law, E.J.; Klavuhn, K.G.; Island, T.C.; Holtz, J.Z. Diagnosis of burn depth using laser-induced indocyanine green fluorescence: A preliminary clinical trial. Burns 2001, 27, 364–371. [Google Scholar] [CrossRef]
- Variations in Burn Perfusion over Time as Measured by Portable ICG Fluorescence: A Case Series|Burns & Trauma|Oxford Academic. Available online: https://academic.oup.com/burnstrauma/article/2/4/2321-3868.142397/5650558 (accessed on 25 July 2021).
- Devgan, L.; Bhat, S.; Aylward, S.; Spence, R.J. Modalities for the Assessment of Burn Wound Depth. J. Burn. Wounds 2006, 5, e2. [Google Scholar]
- Kaiser, M.; Yafi, A.; Cinat, M.; Choi, B.; Durkin, A.J. Noninvasive assessment of burn wound severity using optical technology: A review of current and future modalities. Burns 2011, 37, 377–386. [Google Scholar] [CrossRef]
- Watts, A.M.I.; Tyler, M.P.H.; Perry, M.E.; Roberts, A.H.N.; McGrouther, D.A. Burn depth and its histological measurement. Burns 2001, 27, 154–160. [Google Scholar] [CrossRef]
- Jaspers, M.E.H.; Maltha, I.; Klaessens, J.H.G.M.; de Vet, H.C.W.; Verdaasdonk, R.M.; van Zuijlen, P.P.M. Insights into the use of thermography to assess burn wound healing potential: A reliable and valid technique when compared to laser Doppler imaging. J. Biomed. Opt. 2016, 21, 096006. [Google Scholar] [CrossRef]
- Miccio, J.; Parikh, S.; Marinaro, X.; Prasad, A.; McClain, S.; Singer, A.J.; Clark, R.A.F. Forward-looking infrared imaging predicts ultimate burn depth in a porcine vertical injury progression model. Burns 2016, 42, 397–404. [Google Scholar] [CrossRef]
- Hardwicke, J.; Thomson, R.; Bamford, A.; Moiemen, N. A pilot evaluation study of high resolution digital thermal imaging in the assessment of burn depth. Burns 2013, 39, 76–81. [Google Scholar] [CrossRef]
- Active IR-Thermal Imaging in Medicine|SpringerLink. Available online: https://link.springer.com/article/10.1007%2Fs10921-016-0335-y (accessed on 25 July 2021).
- Renkielska, A.; Kaczmarek, M.; Nowakowski, A.; Grudziński, J.; Czapiewski, P.; Krajewski, A.; Grobelny, I. Active Dynamic Infrared Thermal Imaging in Burn Depth Evaluation. J. Burn Care Res. 2014, 35, e294–e303. [Google Scholar] [CrossRef]
- McInnes, M.D.F.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; PRISMA-DTA Group; et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA 2018, 319, 388–396. [Google Scholar] [CrossRef]
- Wearn, C.; Lee, K.C.; Hardwicke, J.; Allouni, A.; Bamford, A.; Nightingale, P.; Moiemen, N. Prospective comparative evaluation study of Laser Doppler Imaging and thermal imaging in the assessment of burn depth. Burns 2018, 44, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Ganon, S.; Guédon, A.; Cassier, S.; Atlan, M. Contribution of thermal imaging in determining the depth of pediatric acute burns. Burns 2020, 46, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jiménez, M.A.; Ramirez-GarciaLuna, J.L.; Kolosovas-Machuca, E.S.; Drager, J.; González, F.J. Development and validation of an algorithm to predict the treatment modality of burn wounds using thermographic scans: Prospective cohort study. PLoS ONE 2018, 13, e0206477. [Google Scholar] [CrossRef]
- Hoeksema, H.; Van de Sijpe, K.; Tondu, T.; Hamdi, M.; Van Landuyt, K.; Blondeel, P.; Monstrey, S. Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Burns 2009, 35, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Singer, A.J.; Relan, P.; Beto, L.; Jones-Koliski, L.; Sandoval, S.; Clark, R.A.F. Infrared Thermal Imaging Has the Potential to Reduce Unnecessary Surgery and Delays to Necessary Surgery in Burn Patients. J. Burn Care Res. 2016, 37, 350–355. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Simmons, J.D.; Kahn, S.A.; Vickers, A.L.; Crockett, E.S.; Whitehead, J.D.; Krecker, A.K.; Lee, Y.-L.; Miller, A.N.; Patterson, S.B.; Richards, W.O.; et al. Early Assessment of Burn Depth with Far Infrared Time-Lapse Thermography. J. Am. Coll. Surg. 2018, 226, 687–693. [Google Scholar] [CrossRef]
- Cole, R.P.; Jones, S.G.; Shakespeare, P.G. Thermographic assessment of hand burns. Burns 1990, 16, 60–63. [Google Scholar] [CrossRef]
- Cole, R.P.; Shakespeare, P.G.; Chissell, H.G.; Jones, S.G. Thermographic assessment of burns using a nonpermeable membrane as wound covering. Burns 1991, 17, 117–122. [Google Scholar] [CrossRef]
- Carrière, M.E.; Haas, L.E.M.; Pijpe, A.; Meij-de Vries, A.; Gardien, K.L.M.; Zuijlen, P.P.M.; Jaspers, M.E.H. Validity of thermography for measuring burn wound healing potential. Wound Repair Regen. 2020, 28, 347–354. [Google Scholar] [CrossRef]
- Ammer, K. The Glamorgan Protocol for recording and evaluation of thermal images of the human body. Thermol. Int. 2008, 18, 125–129. [Google Scholar]
- Ye, H.; De, S. Thermal injury of skin and subcutaneous tissues: A review of experimental approaches and numerical models. Burns 2017, 43, 909–932. [Google Scholar] [CrossRef] [PubMed]
- McUmber, H.; Dabek, R.J.; Bojovic, B.; Driscoll, D.N. Burn Depth Analysis Using Indocyanine Green Fluorescence: A Review. J. Burn Care Res. 2019, 40, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Hope-Ross, M.; Yannuzzi, L.A.; Gragoudas, E.S.; Guyer, D.R.; Slakter, J.S.; Sorenson, J.A.; Krupsky, S.; Orlock, D.A.; Puliafito, C.A. Adverse Reactions due to Indocyanine Green. Ophthalmology 1994, 101, 529–533. [Google Scholar] [CrossRef]
- Alander, J.T.; Kaartinen, I.; Laakso, A.; Pätilä, T.; Spillmann, T.; Tuchin, V.V.; Venermo, M.; Välisuo, P. A Review of Indocyanine Green Fluorescent Imaging in Surgery. Int. J. Biomed. Imaging 2012. [Google Scholar] [CrossRef]
- Jaspers, M.E.H.; Carrière, M.E.; Meij-de Vries, A.; Klaessens, J.H.G.M.; van Zuijlen, P.P.M. The FLIR ONE thermal imager for the assessment of burn wounds: Reliability and validity study. Burns 2017, 43, 1516–1523. [Google Scholar] [CrossRef]
- Langemo, D.K.; Spahn, J.G. A reliability study using a long-wave infrared thermography device to identify relative tissue temperature variations of the body surface and underlying tissue. Adv. Skin Wound Care 2017, 30, 109–119. [Google Scholar] [CrossRef]
Study | Study Design | No of Patients | No of Burns or ROI | Age (Range) | M:F Ratio | Type(s) of Burn | Reference Standard | Point of Measurement | Timing of Clinical Assessment (Days Post Burn) | Timing of Thermograms (Days Post Burn) | Thermogram Thresholds | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ganon et al., 2020 [18] | Prospective cohort | 40 | 40 | 2.9 (13 months–13 years) | 30:10 | Superficial | 29 | Burns healed within day 15 | Exact centre of burned area vs. healthy area > 3 cm away from wound or contralateral distal extremity | Not assessed—outcomes at 15 days used as reference standard | T1 (D1–3) T2 (D4–7) T3 (D8–10) | −1.2 °C diff ones as well | FLIR One, FLIR Systems, Inc., Wilsonville, OR 97070, USA |
Deep | 11 | Burns not healed (<95% epithelialized wound surface) or have been grafted | |||||||||||
Martinez-Jimenez et al., 2018 [19] | Prospective cohort | 22 | 14 | 26.5 | 16:6 | Superficial | 8 | Re-epithelisation before 15 days | Not assessed—outcomes at 15 days used as reference standard | Within first 3 days (mean 1.45, median 1) | 3.0 °C (for a specificity of 100%) | FLIR T400, FLIR Systems, Inc., Wilsonville, OR 97070, USA | |
Deep | 6 | Wounds not re-epithelisaed after 15 days (requiring one or more skin grafts or removal of appendage) | |||||||||||
Simmons et al., 2018 [23] | Prospective cohort | 16 | 16 | 37.5 | 11:5 | Superficial | 7 | Wounds not requiring a skin graft | 2 × 2 cm ROI placed on the area of least heat reacquisition within the wound compared to healthy skin | Not assessed—outcomes at 15 days used as reference standard | Day 1 | Temperature difference for healed vs. non-healed wound = −16.8 vs. −23.6 (AUC 1) | Model H, Thermapp, Opgal Optronic Industries Ltd., Karmiel 20101, Israel |
Deep | 9 | Wound requiring a skin graft | |||||||||||
Wearn et al., 2018 [17] | Prospective cohort | 16 | 52 | 37.5 | 13:3 | Superficial | 9 | LDI and clinical assessment of wounds with a <21 days healing potential | Burn wound temperature based on 52 ROIs compared to control area of non-burnt skin on contralateral side | Not reported—outcomes at 21 days and LDI used as reference standard | Day 0 Day 3 | 1.5 °C | FLIR SC660, FLIR Systems, Inc., Wilsonville, OR 97070, USA |
Deep | 43 | LDI and clinical assessment of wounds with a >21 days healing potential | |||||||||||
Singer et al., 2016 [21] | Prospective cohort | 24 | 39 | 39.5 (SD 16.4) | 19:5 | Superficial | 23 | Wounds with healing time < 21 days | ROI was a single point in the middle of the burn that appeared to be deepest | Not reported—outcomes at 21 days and wound requiring excision with histological assessment used as reference standard | Within 2 days | 0.1 °C | FLIR T300, FLIR Systems, Inc., Wilsonville, OR 97070, USA |
Deep | 16 | Wounds with healing time > 21 days, or requiring excision and grafting with histological assessment | |||||||||||
Cole et al., 1990 [24] | Prospective cohort | 23 | 36 | 32 | 19:4 | Superficial | 16 | Wound healing < 21 days | Temperature of burned surface (divided into zones) wrapped in clingfilm was used | Not reported—outcomes at 21 days used as reference standard | Within 2 days | Cut-off level of 31 °C to distinguish between warm and cold | AGA Thermovision 782 |
Deep | 20 | Wound healing > 21 days requiring excision and grafting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asif, A.; Poyiatzis, C.; Raheman, F.J.; Rojoa, D.M. The Use of Infrared Thermography (IRT) in Burns Depth Assessment: A Diagnostic Accuracy Meta-Analysis. Eur. Burn J. 2022, 3, 432-446. https://doi.org/10.3390/ebj3030038
Asif A, Poyiatzis C, Raheman FJ, Rojoa DM. The Use of Infrared Thermography (IRT) in Burns Depth Assessment: A Diagnostic Accuracy Meta-Analysis. European Burn Journal. 2022; 3(3):432-446. https://doi.org/10.3390/ebj3030038
Chicago/Turabian StyleAsif, Aqua, Constantinos Poyiatzis, Firas J. Raheman, and Djamila M. Rojoa. 2022. "The Use of Infrared Thermography (IRT) in Burns Depth Assessment: A Diagnostic Accuracy Meta-Analysis" European Burn Journal 3, no. 3: 432-446. https://doi.org/10.3390/ebj3030038