Acoustic Target Strength of Thornfish (Terapon jarbua) Based on the Kirchhoff-Ray Mode Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Samples Collection
2.2. Morphological Information Acquisition
2.3. TS Model Calculation and Estimation
3. Results
3.1. Biological Sampling and Measurement
3.2. TS Variation with Pitch Angle
3.3. TS Variation with Body Length
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chien, L.T.; Hwang, D.F.; Jeng, S.S. Effect of Thermal Stress on Dietary Requirement of Vitamin C in Thornfish Terapon jarbua. Fish. Sci. 1999, 65, 731–735. [Google Scholar] [CrossRef]
- Koslow, J.A. The Role of Acoustics in Ecosystem-Based Fishery Management. ICES J. Mar. Sci. 2009, 66, 966–973. [Google Scholar] [CrossRef]
- Davison, P.C.; Koslow, J.A.; Kloser, R.J. Acoustic Biomass Estimation of Mesopelagic Fish: Backscattering from Individuals, Populations, and Communities. ICES J. Mar. Sci. 2015, 72, 1413–1424. [Google Scholar] [CrossRef]
- Deshpande, K.; Kelkar, N. Acoustic Identification of Otomops wroughtoni and Other Free-Tailed Bat Species (Chiroptera: Molossidae) from India. Acta Chiropterol. 2015, 17, 419–428. [Google Scholar] [CrossRef]
- Korneliussen, R.J. The Acoustic Identification of Atlantic Mackerel. ICES J. Mar. Sci. 2010, 67, 1749–1758. [Google Scholar] [CrossRef]
- Tan, X.; Kang, M.; Tao, J.; Li, X.; Huang, D. Hydroacoustics Survey of Fish Density, Spatial Distribution, and Behavior Upstream and Downstream of the Changzhou Dam on the Pearl River, China. Fish. Sci. 2011, 77, 891–901. [Google Scholar] [CrossRef]
- Foote, K.G. Fish Target Strengths for Use in Echo Integrator Surveys. J. Acoust. Soc. Am. 1987, 82, 981–987. [Google Scholar] [CrossRef]
- Simmonds, E.J.; MacLennan, D.N. Fisheries Acoustics: Theory and Practice, 2nd ed.; Blackwell Publishing Science: Oxford, UK, 2005; pp. 1–437. ISBN 9780632059942. [Google Scholar]
- Doray, M.; Josse, E.; Gervain, P.; Reynal, L.; Chantrel, J. Acoustic Characterization of Pelagic Fish Aggregations around Moored Fish Aggregating Devices in Martinique (Lesser antilles). Fish. Res. 2006, 82, 162–175. [Google Scholar] [CrossRef]
- Barange, M. Acoustic Identification, Classification and Structure of Biological Patchiness on the Edge of the Agulhas Bank and Its Relation to Frontal Features. S. Afr. J. Mar. Sci. 1994, 14, 333–347. [Google Scholar] [CrossRef]
- Bernasconi, M.; Patel, R.; Nøttestad, L.; Pedersen, G.; Brierley, A.S. The Effect of Depth on the Target Strength of A Humpback Whale (Megaptera novaeangliae). J. Acoust. Soc. Am. 2013, 134, 4316–4322. [Google Scholar] [CrossRef]
- Mukai, T.; Lida, K. Depth Dependence of Target Strength of Live Kokanee Salmon in Accordance with Boyle’s Law. ICES J. Mar. Sci. 1996, 53, 245–248. [Google Scholar] [CrossRef]
- Sobradillo, B.; Boyra, G.; Pérez-Arjona, I.; Martinez, U.; Espinosa, V. Ex Situ and In Situ Target Strength Measurements of European Anchovy in the Bay of Biscay. ICES J. Mar. Sci. 2021, 78, 782–796. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Dai, F. Depth-Dependent Target Strength of Anchovy (Engraulis japonicus) Measured In Situ. ICES J. Mar. Sci. 2008, 65, 882–888. [Google Scholar] [CrossRef]
- Sawada, K.; Takahashi, H.; Abe, K.; Ichii, T.; Watanabe, K.; Takao, Y. Target-Strength, Length, and Tilt-Angle Measurements of Pacific Saury (Cololabis saira) and Japanese Anchovy (Engraulis japonicus) Using an Acoustic-Optical System. ICES J. Mar. Sci. 2009, 66, 1212–1218. [Google Scholar] [CrossRef]
- Salvetat, J.; Lebourges-Dhaussy, A.; Travassos, P.; Gastauer, S.; Roudaut, G.; Vargas, G.; Bertrand, A. Corrigendum to: In Situ Target Strength Measurement of the Black Triggerfish Melichthys niger and the Ocean Triggerfish Canthidermis sufflamen. Mar. Freshw. Res. 2021, 72, 449. [Google Scholar] [CrossRef]
- Robertis, A.D.; Taylor, K. In Situ Target Strength Measurements of the Scyphomedusa Chrysaora melanaster. Fish. Res. 2014, 153, 18–23. [Google Scholar] [CrossRef]
- Murase, H.; Kawabata, A.; Kubota, H.; Nakagami, M.; Amakasu, K.; Abe, K.; Miyashita, K. Effect of Depth-Dependent Target Strength on Biomass Estimation of Japanese Anchovy. J. Mar. Sci. Tech. 2011, 19, 267–272. [Google Scholar] [CrossRef]
- Fernandes, P.G.; Copland, P.; Garcoa, R.; Nicosevici, T.; Scoulding, B. Additional Evidence for Fisheries Acoustics: Small Cameras and Angling Gear Provide Tilt Angle Distributions and Other Relevant Data for Mackerel Surveys. ICES J. Mar. Sci. 2016, 73, 2009–2019. [Google Scholar] [CrossRef]
- Glass, C. Dynamics of Pelagic Fish Distribution and Behaviour: Effect on Fisheries and Stock Assessment. Pierre Fréeon and Ole Arve Misund. Rev. Fish. Biol. Fisher. 2000, 10, 124. [Google Scholar] [CrossRef]
- Peltonen, H.; Balk, H. The Acoustic Target Strength of Herring (Clupea harengus L.) in the Northern Baltic Sea. ICES J. Mar. Sci. 2005, 62, 803–808. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Chen, G.; Zhang, P.; Qiu, Y.; Yao, Z. Hydroacoustic Studies on the Commercially Important Squid Sthenoteuthis Oualaniensis in the South China Sea. Fish. Res. 2015, 169, 45–51. [Google Scholar] [CrossRef]
- Kang, D.; Hwang, D. Ex Situ Target Strength of Rockfish (Sebastes schlegeli) and Red Sea Bream (Pagrus major) in the Northwest Pacific. ICES J. Mar. Sci. 2003, 60, 538–543. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, V.; Encina-Encina, L.; Rodríguez-Ruiz, A.; Sánchez-Carmona, R. Horizontal Target Strength of Luciobarbus sp. in Ex Situ Experiments: Testing Differences by Aspect Angle, Pulse Length and Beam Position. Fish. Res. 2015, 164, 214–222. [Google Scholar] [CrossRef]
- Kang, D.; Cho, S.; Lee, C.; Myoung, J.; Na, J. Ex Situ Target-Strength Measurements of Japanese Anchovy (Engraulis japonicus) in the Coastal Northwest Pacific. ICES J. Mar. Sci. 2009, 66, 1219–1224. [Google Scholar] [CrossRef]
- Kim, H.; Cho, S.; Kim, M.; Kim, S.; Kang, D. Acoustic Target Strength According to Different Growth Stages of Japanese Anchovy (Engraulis japonicus): A Comparison of Juvenile and Adult Fish. J. Mar. Sci. Eng. 2023, 11, 1575. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Chen, P.; Zhang, J.; Fang, L.; Li, N. Measurement of Single-Fish Target Strength in the South China Sea. Chin. J. Oceanol. Limn. 2012, 30, 554–562. [Google Scholar] [CrossRef]
- Chu, D.; Eastland, G.C. Calibration of a Broadband Acoustic Transducer with a Standard Spherical Target in the Near Field. J. Acoust. Soc. Am. 2015, 137, 2148–2157. [Google Scholar] [CrossRef]
- Foote, K.G. Discriminating between the Nearfield and the Farfield of Acoustic Transducers. J. Acoust. Soc. Am. 2014, 136, 1511–1517. [Google Scholar] [CrossRef]
- Hazen, L.E.; Horne, J.K. A Method for Evaluating the Effects of Biological Factors on Fish Target Strength. ICES J. Mar. Sci. 2003, 60, 555–562. [Google Scholar] [CrossRef]
- Khodabandeloo, B.; Agersted, M.D.; Klevjer, T.; Macaulay, G.J.; Melle, W. Estimating Target Strength and Physical Characteristics of Gas-Bearing Mesopelagic Fish from Wideband In Situ Echoes using a Viscous-Elastic Scattering Model. J. Acoust. Soc. Am. 2021, 149, 673–691. [Google Scholar] [CrossRef] [PubMed]
- Jech, J.M.; Horne, J.K. Three-Dimensional Visualization of Fish Morphometry and Acoustic Backscatter. Acoust. Res. Lett. 2002, 3, 35–40. [Google Scholar] [CrossRef]
- Tang, Y.; Nishimori, Y.; Furusawa, M. The Average Three-Dimensional Target Strength of Fish by Spheroid Model for Sonar Surveys. ICES J. Mar. Sci. 2009, 66, 1176–1183. [Google Scholar] [CrossRef]
- Furusawa, M. Prolate Spheroidal Models for Predicting General Trends of Fish Target Strength. J. Acoust. Soc. Jpn. 1988, 9, 13–24. [Google Scholar] [CrossRef]
- Stanton, T.K. Sound Scattering by Cylinders of Finite Length. III. Deformed Cylinders. J. Acoust. Soc. Am. 1989, 86, 691–705. [Google Scholar] [CrossRef]
- Clay, C.S.; Horne, J.K. Acoustic Models of Fish: The Atlantic Cod (Gadus Morhua). J. Acoust. Soc. Am. 1994, 96, 1661–1668. [Google Scholar] [CrossRef]
- Gauthier, S.; Horne, J.K. Acoustic Characteristics of Forage Fish Species in the Gulf of Alaska and Bering Sea Based on Kirchhoff-Approximation Models. Can. J. Fish. Aquat. Sci. 2004, 61, 1839–1850. [Google Scholar] [CrossRef]
- Horne, J.K. The Influence of Ontogeny, Physiology, and Behaviour on the Target Strength of Walleye Pollock (Theragra chalcogramma). ICES J. Mar. Sci. 2003, 60, 1063–1074. [Google Scholar] [CrossRef]
- Tong, J.; Xue, M.; Zhu, Z.; Wang, W.; Tian, S. Impacts of Morphological Characteristics on Target Strength of Chub Mackerel (Scomber japonicus) in the Northwest Pacific Ocean. Front. Mar. Sci. 2022, 9, 856483. [Google Scholar] [CrossRef]
- Kusdinar, A.; Hwang, B.K.; Shin, H.O. Determining the Target Strength Bambood Wrasse (Pseudolabrus japonicus) Using Kirchhoff-Ray Mode. J. Kor. Soc. Fish. Technol. 2014, 50, 427–434. [Google Scholar] [CrossRef]
- Kang, D.; Sadayasu, K.; Mukai, S.; Lida, K.; Hwang, D.; Sawada, K.; Miyashita, K. Target Strength Estimation of Black Porgy Acanthopagrus Schlegeli Using Acoustic Measurements and A Scattering Model. Fish. Sci. 2004, 70, 819–828. [Google Scholar] [CrossRef]
- Love, R.H. Dorsal-aspect Target Strength of an Individual Fish. J. Acoust. Soc. Am. 1971, 49, 816–823. [Google Scholar] [CrossRef]
- Foote, K.G. Importance of the Swimbladder in Acoustic Scattering by Fish: A Comparison of Gadoid and Mackerel Target Strength. J. Acoust. Soc. Am. 1980, 67, 2084–2089. [Google Scholar] [CrossRef]
Medium | Sound Velocity (m/s) |
---|---|
Sound velocity in seawater (m/s) | 1490 |
Sound velocity in fish body (m/s) | 1570 |
Sound velocity in swim bladder (m/s) | 345 |
Density of seawater (kg/m3) | 1030 |
Density of fish body (kg/m3) | 1070 |
Density of swim bladder (kg/m3) | 1.24 |
Serial Number | Body Length (cm) | Body Weight (g) |
---|---|---|
1 | 16.01 | 133.4 |
2 | 19.06 | 181.1 |
3 | 19.06 | 174.5 |
4 | 20.52 | 240.3 |
5 | 10.05 | 30.0 |
6 | 10.95 | 33.3 |
7 | 15.24 | 109.5 |
8 | 10.78 | 35.0 |
9 | 16.39 | 125.3 |
10 | 17.31 | 130.5 |
11 | 16.48 | 119.6 |
12 | 17.62 | 154.1 |
13 | 19.70 | 200.2 |
14 | 19.48 | 213.3 |
15 | 18.44 | 177.5 |
16 | 18.00 | 171.1 |
17 | 9.97 | 26.5 |
18 | 15.98 | 108.0 |
19 | 15.57 | 100.5 |
Pitch Angle Distribution | Frequency (kHz) | Average TS (dB) |
---|---|---|
38 | −37.72 | |
70 | −38.86 | |
120 | −39.63 | |
200 | −39.53 | |
38 | −37.42 | |
70 | −38.70 | |
120 | −39.72 | |
200 | −39.51 |
Pitch Angle Distribution | Frequency (kHz) | Regression Equation | Standard b20 Form Equation |
---|---|---|---|
38 | |||
70 | |||
120 | |||
200 | |||
38 | |||
70 | |||
120 | |||
200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Liu, J.; Gao, X.; Huang, H.; Wang, F.; Huang, Z. Acoustic Target Strength of Thornfish (Terapon jarbua) Based on the Kirchhoff-Ray Mode Model. Electronics 2024, 13, 1279. https://doi.org/10.3390/electronics13071279
Li B, Liu J, Gao X, Huang H, Wang F, Huang Z. Acoustic Target Strength of Thornfish (Terapon jarbua) Based on the Kirchhoff-Ray Mode Model. Electronics. 2024; 13(7):1279. https://doi.org/10.3390/electronics13071279
Chicago/Turabian StyleLi, Bin, Jiahao Liu, Xiujing Gao, Hongwu Huang, Fang Wang, and Zhuoya Huang. 2024. "Acoustic Target Strength of Thornfish (Terapon jarbua) Based on the Kirchhoff-Ray Mode Model" Electronics 13, no. 7: 1279. https://doi.org/10.3390/electronics13071279