MGAD: Mutual Information and Graph Embedding Based Anomaly Detection in Multivariate Time Series
Abstract
:1. Introduction
- (1)
- We propose an unsupervised outlier detection called MGAD with a high interpretability and accuracy. It innovatively combines the information of the sensors themselves with the mutual information between the sensors, which avoids the problem that previous multivariate time series anomaly detection for sensors either only considers the information of the sensors themselves or the information between the sensors, and thus improves the accuracy of the algorithm;
- (2)
- Massive experiments on benchmark datasets have demonstrated the superior performance of the MGAD algorithm, compared with state-of-the-art baselines in terms of ROC, F1, and AP;
- (3)
- In this paper, mutual information is used to assess the closeness of the relationship between sensors rather than utilizing correlation coefficients, Euclidean distances, or cosine distances, etc., which will give academics something useful to explore.
2. Related Work
2.1. Anomaly Detection in Multivariate Time Series
2.2. Graph Embedding
2.3. Graph Neural Network
3. Proposed Algorithm
3.1. Problem Statement
3.2. Algorithm Overview
- (1)
- Embedding of sensor data, where heterogeneous sensor data become different vectors in the same vector space; it employs embedding vectors to obtain the unique characteristics of each sensor.
- (2)
- Constructing a relationship graph between sensors using their mutual information about each other;
- (3)
- Learning the relationship graph between sensors using a graph attention mechanism, to predict the sensor data at the next moment;
- (4)
- Comparing the predicted values with the real sensor data to detect potential outliers.
3.3. Sensors Embedding
3.4. Mutual Information Graph Construction
3.5. Graph Structure Learning
3.5.1. Input Layer
3.5.2. Hidden Layer
3.5.3. Output Layer
3.6. Anomaly Scoring
3.7. Pseudocode of MGAD
Algorithm 1 MGAD |
Input: input data Output: Outlier scores |
1. sensors embedding to obtain the embedding vector for each sensor |
2. mutual information graph construction |
3. for in max epoch number: carry out graph structure learning (1) input layer (2) hidden layer (3) output layer |
4. end for |
5. obtain the anomaly score |
6. return |
3.8. Time Complexity Analysis
4. Experimental Results and Discussion
4.1. Datasets
- (1)
- The Secure Water Treatment (SWaT) dataset comes from a water treatment test bed coordinated by Singapore’s Public Utility Board [46] (https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/ accessed on 5 January 2024);
- (2)
- Water Distribution (WADI), which is an extension of SwaT, is a distribution system comprising a larger number of water distribution pipelines [47] (https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/ accessed on 5 January 2024);
- (3)
- Credit-g contains credit card transaction data [48] (https://www.openml.org/d/1597 accessed on 5 January 2024);
- (4)
- The GECCO IoT dataset contains IoT data for drinking water monitoring and was provided by Thüringer Fernwasserversorgung and the IMProvT research project [49] (https://www.spotseven.de/gecco/gecco-challenge/gecco-challenge-2018/ accessed on 5 January 2024).
4.2. Baselines
- (1)
- KNN: K nearest neighbors generates an anomaly score based on the distance between each point and its kth nearest neighbor [50];
- (2)
- OCSVM is trained using normal data to identify the limits of normal and abnormal data [51];
- (3)
- PCA: Principal component analysis discovers a low-dimensional projection that largely accounts for the data’s variance. The reconstruction error of this projection is called the anomaly score [52];
- (4)
- AE: Autoencoders comprise a decoder and an encoder that rebuilds data samples. The anomaly score is the reconstruction error [27].
- (5)
- LSTM-VAE: This algorithm combines LSTM and VAE by substituting the feed-forward network in a VAE with LSTM. The anomaly score is the reconstruction error [53];
- (6)
- DAGMM: This algorithm combine deep Autoencoders with a Gaussian mixture model to generate a low-dimensional representation, and reconstruction error is the anomaly score [54];
- (7)
- AnoGAN: This algorithm uses a deep convolutional generative adversarial network to learn a manifold of normal anatomical variability, accompanying a novel anomaly scoring scheme based on the mapping from image space to a latent space [55];
- (8)
- MAD-GAN: After training a GAN model on normal data, each sample’s anomaly score is calculated using the reconstruction-based method and the LSTM-RNN discriminator [56].
4.3. Evaluation Metrics
4.3.1. ROC (Receiver Operating Characteristic)
4.3.2. F1-Score
4.3.3. AP (Average Precision)
4.4. Experimental Setup
4.5. Experiment Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hawkins, D.M. Identification of Outliers; Springer: Dordrecht, The Netherlands, 1980; Volume 11. [Google Scholar]
- Wang, H.; Wang, W.; Liu, Y.; Alidaee, B. Integrating Machine Learning Algorithms with Quantum Annealing Solvers for Online Fraud Detection. IEEE Access 2022, 10, 75908–75917. [Google Scholar] [CrossRef]
- Lai, G. Artificial Intelligence Techniques for Fraud Detection. Preprints 2023, 2023121115. [Google Scholar] [CrossRef]
- Sabitha, R.; Shukla, A.P.; Mehbodniya, A.; Shakkeera, L.; Reddy, P.C.S. A Fuzzy Trust Evaluation of Cloud Collaboration Outlier Detection in Wireless Sensor Networks. Ad Hoc Sens. Wirel. Netw. 2022, 53, 165–188. [Google Scholar]
- Bhattacharjee, P.; Garg, A.; Mitra, P. KAGO: An approximate adaptive grid-based outlier detection approach using kernel density estimate. Pattern Anal. Appl. 2021, 24, 1825–1846. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Zhou, J.; Zheng, W.; Feng, J.; Li, L.; Liu, Z.; Li, M.; Zhang, Z.; Chen, C.; Li, X.; et al. Distributed Deep Forest and its Application to Automatic Detection of Cash-Out Fraud. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–19. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, S.; Liu, R.; Wang, W.; Hong, Y.; Hu, R. Automatic Traffic Anomaly Detection on the Road Network with Spatial-Temporal Graph Neural Network Representation Learning. Wirel. Commun. Mob. Comput. 2022, 2022, 4222827. [Google Scholar] [CrossRef]
- Fournier, N.; Farid, Y.Z.; Patire, A. Erroneous High Occupancy Vehicle Lane Data: Detecting Misconfigured Traffic Sensors with Machine Learning. Transp. Res. Rec. J. Transp. Res. Board 2022, 2677, 1593–1610. [Google Scholar] [CrossRef]
- Dixit, P.; Bhattacharya, P.; Tanwar, S.; Gupta, R. Anomaly detection in autonomous electric vehicles using AI techniques: A comprehensive survey. Expert Syst. 2022, 39, e12754. [Google Scholar] [CrossRef]
- Watts, J.; Van Wyk, F.; Rezaei, S.; Wang, Y.; Masoud, N.; Khojandi, A. A Dynamic Deep Reinforcement Learning-Bayesian Framework for Anomaly Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22884–22894. [Google Scholar] [CrossRef]
- Mansour, R.F.; Escorcia-Gutierrez, J.; Gamarra, M.; Villanueva, J.A.; Leal, N. Intelligent video anomaly detection and classification using faster RCNN with deep reinforcement learning model. Image Vis. Comput. 2021, 112, 104229. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, B.; Shen, C.; Liu, Y.; Lu, H.; Hua, X.S. Spatio-Temporal AutoEncoder for Video Anomaly Detection. In Proceedings of the 25th ACM International Conference on Multimedia (MM), Mountain View, CA, USA, 23–27 October 2017. [Google Scholar]
- Dang, T.T.; Ngan, H.Y.; Liu, W. Distance-Based k-Nearest Neighbors Outlier Detection Method in Large-Scale Traffic Data. In Proceedings of the IEEE International Conference on Digital Signal Processing (DSP), Singapore, 21–24 July 2015. [Google Scholar]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Saleh, M.; Othman, S.H.; Driss, M.; Al-Dhaqm, A.; Ali, A.; Yafooz, W.M.S.; Emara, A.-H.M. A Metamodeling Approach for IoT Forensic Investigation. Electronics 2023, 12, 524. [Google Scholar] [CrossRef]
- Atitallah, S.B.; Driss, M.; Ghezala, H.B. FedMicro-IDA: A federated learning and microservices-based framework for IoT data analytics. Internet Things 2023, 23, 100845. [Google Scholar] [CrossRef]
- Alrayes, F.S.; Zakariah, M.; Driss, M.; Boulila, W. Deep Neural Decision Forest (DNDF): A Novel Approach for Enhancing Intrusion Detection Systems in Network Traffic Analysis. Sensors 2023, 23, 8362. [Google Scholar] [CrossRef]
- Ntroumpogiannis, A.; Giannoulis, M.; Myrtakis, N.; Christophides, V.; Simon, E.; Tsamardinos, I. A meta-level analysis of online anomaly detectors. VLDB J. 2023, 32, 845–886. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, L.; Cheng, K.; Liu, Y.; Jiang, J.; Nie, Y.; Li, X.; Kuang, X. ICDF: Intrusion collaborative detection framework based on confidence. Int. J. Intell. Syst. 2022, 37, 7180–7199. [Google Scholar] [CrossRef]
- Heigl, M.; Weigelt, E.; Urmann, A.; Fiala, D.; Schramm, M. Exploiting the Outcome of Outlier Detection for Novel Attack Pattern Recognition on Streaming Data. Electronics 2021, 10, 2160. [Google Scholar] [CrossRef]
- Souiden, I.; Omri, M.N.; Brahmi, Z. A survey of outlier detection in high dimensional data streams. Comput. Sci. Rev. 2022, 44, 100463. [Google Scholar] [CrossRef]
- Pei, Y.; Zaïane, O. A Synthetic Data Generator for Clustering and Outlier Analysis. 2006. Available online: https://era.library.ualberta.ca/items/63beb6a7-cc50-4ffd-990b-64723b1e4bf9 (accessed on 5 January 2024).
- Chaudhry, H.N.; Javed, Y.; Kulsoom, F.; Mehmood, Z.; Khan, Z.I.; Shoaib, U.; Janjua, S.H. Sentiment Analysis of before and after Elections: Twitter Data of U.S. Election 2020. Electronics 2021, 10, 2082. [Google Scholar] [CrossRef]
- Chalapathy, R.; Toth, E.; Chawla, S. Group Anomaly Detection Using Deep Generative Models. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Dublin, Ireland, 10–14 September 2019. [Google Scholar]
- Chenaghlou, M.; Moshtaghi, M.; Leckie, C.; Salehi, M. Online Clustering for Evolving Data Streams with Online Anomaly Detection. In Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Melbourne, Australia, 3–6 June 2018. [Google Scholar]
- Sharma, V.; Kumar, R.; Cheng, W.-H.; Atiquzzaman, M.; Srinivasan, K.; Zomaya, A. NHAD: Neuro-Fuzzy Based Horizontal Anomaly Detection In Online Social Networks. IEEE Trans. Knowl. Data Eng. 2018, 30, 2171–2184. [Google Scholar] [CrossRef]
- Sikder, M.N.K.; Batarseh, F.A. Outlier detection using AI: A survey. In AI Assurance; Academic Press: Cambridge, MA, USA, 2023; pp. 231–291. [Google Scholar]
- Li, Z.; Zhu, Y.; Van Leeuwen, M. A Survey on Explainable Anomaly Detection. ACM Trans. Knowl. Discov. Data 2023, 18, 1–54. [Google Scholar] [CrossRef]
- Su, X.; Xue, S.; Liu, F.; Wu, J.; Yang, J.; Zhou, C.; Hu, W.; Paris, C.; Nepal, S.; Jin, D.; et al. A Comprehensive Survey on Community Detection with Deep Learning. IEEE Trans. Neural Netw. Learn. Syst. 2022; Early Access. [Google Scholar]
- Huang, Y.; Liu, W.; Li, S.; Guo, Y.; Chen, W. Interpretable Single-dimension Outlier Detection (ISOD): An Unsupervised Outlier Detection Method Based on Quantiles and Skewness Coefficients. Appl. Sci. 2023, 14, 136. [Google Scholar] [CrossRef]
- Su, Y.; Zhao, Y.; Niu, C.; Liu, R.; Sun, W.; Pei, D. Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019. [Google Scholar]
- Wang, Y.; Du, X.; Lu, Z.; Duan, Q.; Wu, J. Improved LSTM-based Time-Series Anomaly Detection in Rail Transit Operation Environments. IEEE Trans. Ind. Inform. 2022, 18, 9027–9036. [Google Scholar] [CrossRef]
- Wei, Y.; Jang-Jaccard, J.; Xu, W.; Sabrina, F.; Camtepe, S.; Boulic, M. LSTM-autoencoder-based anomaly detection for indoor air quality time-series data. IEEE Sens. J. 2023, 23, 3787–3800. [Google Scholar] [CrossRef]
- Hundman, K.; Constantinou, V.; Laporte, C.; Colwell, I.; Soderstrom, T. Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding. In Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), London, UK, 19–23 August 2018. [Google Scholar]
- Malhotra, P.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection. arXiv 2016, arXiv:1607.00148. [Google Scholar]
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014. [Google Scholar]
- Zhang, X.; Hu, W.; Chen, S.; Maybank, S. Graph-embedding-based learning for robust object tracking. IEEE Trans. Ind. Electron. 2013, 61, 1072–1084. [Google Scholar] [CrossRef]
- Deng, A.; Hooi, B. Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021. [Google Scholar]
- Gu, Y.; Li, G.; Gu, J.; Jung, J.J. Graph embedding-based Anomaly localization for HVAC system. J. Build. Eng. 2023, 77, 107511. [Google Scholar] [CrossRef]
- Safaei, M.; Driss, M.; Boulila, W.; Sundararajan, E.A.; Safaei, M. Global outliers detection in wireless sensor networks: A novel approach integrating time-series analysis, entropy, and random forest-based classification. Softw. Pract. Exp. 2022, 52, 277–295. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Duan, J.; Huang, C.; Cao, D.; Tong, Y.; Xu, B.; Bai, J.; Tong, J.; Zhang, Q. Multivariate time-series anomaly detection via graph attention network. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Goodge, A.; Hooi, B.; Ng, S.K.; Ng, W.S. Lunar: Unifying local outlier detection methods via graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022. [Google Scholar]
- Rajmohan, R.; Kumar, T.A.; Sandhya, S.G.; Hu, Y.-C. R-GCN: A residual-gated recurrent unit convolution network model for anomaly detection in blockchain transactions. Multimed. Tools Appl. 2024, 1–25. [Google Scholar] [CrossRef]
- Atitallah, S.B.; Driss, M.; Almomani, I. A novel detection and multi-classification approach for IoT-malware using random forest voting of fine-tuning convolutional neural networks. Sensors 2022, 22, 4302. [Google Scholar] [CrossRef]
- Mathur, A.P.; Tippenhauer, N.O. SWaT: A water treatment testbed for research and training on ICS security. In Proceedings of the 2016 International Workshop on Cyber-Physical Systems for Smart Water Networks (CySWater), Vienna, Austria, 11 April 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Ahmed, C.M.; Palleti, V.R.; Mathur, A.P. WADI: A water distribution testbed for research in the design of secure cyber physical systems. In Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, Pittsburgh, PA, USA, 18–21 April 2017. [Google Scholar]
- Dal Pozzolo, A.; Caelen, O.; Johnson, R.A.; Bontempi, G. Calibrating probability with undersampling for unbalanced classification. In Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Darban, Z.Z.; Webb, G.I.; Pan, S.; Aggarwal, C.C.; Salehi, M. Deep learning for time series anomaly detection: A survey. arXiv 2022, arXiv:2211.05244. [Google Scholar]
- Angiulli, F.; Pizzuti, C. Fast outlier detection in high dimensional spaces. In Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, Helsinki, Finland, 19–23 August 2002; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Schölkopf, B.; Williamson, R.C.; Smola, A.; Shawe-Taylor, J.; Platt, J. Support vector method for novelty detection. Adv. Neural Inf. Process. Syst. 2000, 12, 582–588. [Google Scholar]
- Shyu, M.L.; Chen, S.C.; Sarinnapakorn, K.; Chang, L. A novel anomaly detection scheme based on principal component classifier. In Proceedings of the IEEE Foundations and New Directions of Data Mining Workshop, Melbourne, FL, USA, 19–22 November 2003; IEEE Press: Piscataway, NJ, USA, 2003. [Google Scholar]
- Park, D.; Hoshi, Y.; Kemp, C.C. Kemp, A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robot. Autom. Lett. 2018, 3, 1544–1551. [Google Scholar] [CrossRef]
- Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. In Proceedings of the 25th Biennial International Conference on Information Processing in Medical Imaging (IPMI), Boone, NC, USA, 25–30 June 2017. [Google Scholar]
- Li, D.; Chen, D.; Jin, B.; Shi, L.; Goh, J.; Ng, S.K. MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks. In Proceedings of the 28th International Conference on Artificial Neural Networks (ICANN), Munich, Germany, 17–19 September 2019. [Google Scholar]
Dataset | Number of Data | Number of Feature | Percentage of Anomaly |
---|---|---|---|
SWaT | 92,501 | 51 | 11.97% |
WADI | 136,070 | 127 | 5.99% |
Credit-g | 284,807 | 31 | 4.59% |
GECCO IoT | 248,535 | 11 | 8.52% |
Algorithm | SWaT | WADI | Credit-g | GECCO IoT | Average ROC |
---|---|---|---|---|---|
KNN | 0.880 | 0.928 | 0.871 | 0.891 | 0.892 |
OCSVM | 0.981 | 0.605 | 0.765 | 0.620 | 0.743 |
PCA | 0.640 | 0.803 | 0.680 | 0.893 | 0.754 |
AE | 0.677 | 0.880 | 0.717 | 0.910 | 0.796 |
LSTM-VAE | 0.602 | 0.645 | 0.644 | 0.699 | 0.648 |
DAGMM | 0.609 | 0.891 | 0.736 | 0.679 | 0.729 |
AnoGAN | 0.964 | 0.891 | 0.813 | 0.704 | 0.843 |
MAD-GAN | 0.834 | 0.730 | 0.956 | 0.851 | 0.843 |
MGAD | 0.988 | 0.939 | 0.867 | 0.897 | 0.923 |
Algorithm | SWaT | WADI | Credit-g | GECCO IoT | Average F1 |
---|---|---|---|---|---|
KNN | 0.736 | 0.683 | 0.747 | 0.834 | 0.750 |
OCSVM | 0.677 | 0.661 | 0.835 | 0.782 | 0.739 |
PCA | 0.656 | 0.757 | 0.83 | 0.7 | 0.736 |
AE | 0.833 | 0.664 | 0.825 | 0.762 | 0.771 |
LSTM-VAE | 0.668 | 0.777 | 0.707 | 0.723 | 0.719 |
DAGMM | 0.780 | 0.725 | 0.719 | 0.791 | 0.754 |
AnoGAN | 0.678 | 0.658 | 0.692 | 0.65 | 0.670 |
MAD-GAN | 0.698 | 0.692 | 0.655 | 0.739 | 0.696 |
MGAD | 0.822 | 0.841 | 0.832 | 0.822 | 0.829 |
Algorithm | SWaT | WADI | Credit-g | GECCO IoT | Average AP |
---|---|---|---|---|---|
KNN | 0.673 | 0.911 | 0.780 | 0.858 | 0.806 |
OCSVM | 0.588 | 0.721 | 0.913 | 0.651 | 0.718 |
PCA | 0.947 | 0.899 | 0.572 | 0.64 | 0.765 |
AE | 0.935 | 0.859 | 0.674 | 0.724 | 0.798 |
LSTM-VAE | 0.687 | 0.651 | 0.883 | 0.72 | 0.735 |
DAGMM | 0.566 | 0.646 | 0.819 | 0.565 | 0.649 |
AnoGAN | 0.700 | 0.749 | 0.766 | 0.893 | 0.777 |
MAD-GAN | 0.875 | 0.804 | 0.829 | 0.751 | 0.815 |
MGAD | 0.966 | 0.889 | 0.886 | 0.883 | 0.906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Liu, W.; Li, S.; Guo, Y.; Chen, W. MGAD: Mutual Information and Graph Embedding Based Anomaly Detection in Multivariate Time Series. Electronics 2024, 13, 1326. https://doi.org/10.3390/electronics13071326
Huang Y, Liu W, Li S, Guo Y, Chen W. MGAD: Mutual Information and Graph Embedding Based Anomaly Detection in Multivariate Time Series. Electronics. 2024; 13(7):1326. https://doi.org/10.3390/electronics13071326
Chicago/Turabian StyleHuang, Yuehua, Wenfen Liu, Song Li, Ying Guo, and Wen Chen. 2024. "MGAD: Mutual Information and Graph Embedding Based Anomaly Detection in Multivariate Time Series" Electronics 13, no. 7: 1326. https://doi.org/10.3390/electronics13071326