Channel Potential of Bandgap-Engineered Tunneling Oxide (BE-TOX) in Inhibited 3D NAND Flash Memory Strings
Abstract
:1. Introduction
2. Conventional and BE-TOX Structures of 3D NAND Flash Memory
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, H.; Ahn, S.-J.; Shin, Y.G.; Lee, K.; Jung, E. Evolution of NAND flash memory: From 2D to 3D as a storage market leader. In Proceedings of the IEEE Int. Memory Workshop, Monterey, CA, USA, 14–17 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Choi, E.-S.; Park, S.-K. Device considerations for high density and highly reliable 3D NAND flash cell in near future. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 9.4.1–9.4.4. [Google Scholar] [CrossRef]
- Ouyang, Y.; Xia, Z.; Yang, T.; Shi, D.; Zhou, W.; Huo, Z. Optimization of performance and reliability in 3D NAND flash memory. IEEE Electron Device Lett. 2020, 41, 840–843. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Suh, K.-D.; Koh, Y.-N.; Park, J.-W.; Lee, K.-J.; Cho, Y.-J.; Suh, B.-H. A highspeed programming scheme for multi-level NAND flash memory. In Proceedings of the 1996 Symposium on VLSI Circuits, Digest of Technical Papers, Honolulu, HI, USA, 13–15 June 1996. [Google Scholar] [CrossRef]
- Takeuchi, K.; Tanaka, T.; Tanzawa, T. A multipage cell architecture for high-speed programming multilevel NAND flash memories. IEEE J. Solid-State Circuits 1998, 33, 1228–1238. [Google Scholar] [CrossRef]
- Takeuchi, K. Novel Co-Design of NAND Flash Memory and NAND Flash Controller Circuits for Sub-30 nm Low-Power High-Speed Solid-State Drives (SSD). IEEE J. Solid-State Circuits 2009, 44, 1227–1234. [Google Scholar] [CrossRef]
- Kim, M.; Shin, H. Analysis and compact modeling of fast detrapping from bandgap-engineered tunneling oxide in 3-D NAND flash memories. IEEE Trans. Electron Devices 2021, 68, 3339–3345. [Google Scholar] [CrossRef]
- Lue, H.-T.; Lai, S.-C.; Hsu, T.-H.; Du, P.-Y.; Wang, S.-Y.; Hsieh, K.-Y.; Liu, R.; Lu, C.-Y. Modeling of barrier-engineered charge-trapping NAND flash devices. IEEE Trans. Device Mater. Rel. 2010, 10, 222–232. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Lue, H.-T.; Du, P.-Y.; Liao, C.-W.; Lai, E.-K.; Lai, S.-C.; Yang, L.-W.; Yang, T.; Chen, K.-C.; Gong, J.; et al. Reliability and processing effects of bandgap-engineered SONOS (BE-SONOS) flash memory and study of the gate-stack scaling capability. IEEE Trans. Device Mater. Rel. 2008, 8, 416–425. [Google Scholar] [CrossRef]
- Choi, N.; Kang, H.-J.; Bae, J.-H.; Park, B.-G.; Lee, J.-H. Effect of nitrogen content in tunneling dielectric on cell properties of 3-D NAND flash cells. IEEE Electron Device Lett. 2019, 40, 702–705. [Google Scholar] [CrossRef]
- Lue, H.-T.; Wang, S.-Y.; Lai, E.-K.; Shih, Y.-H.; Lai, S.-C.; Yang, L.-W.; Chen, K.-C.; Ku, J.; Hsieh, K.-Y.; Liu, R.; et al. BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability. In Proceedings of the IEEE InternationalElectron Devices Meeting, New York, NY, USA, 5 December 2005; pp. 555–558. [Google Scholar] [CrossRef]
- Kim, H.; Kang, M. Analysis of DCP and NLSB Recovery Time in 3D NAND Flash Memory. Knut Dcollection. February 2023. Available online: http://www.dcollection.net/handler/chains/200000667859 (accessed on 3 February 2024).
- Ham, I.; Jeong, Y.; Baik, S.J.; Kang, M. Ferroelectric polarization aided low voltage operation of 3D NAND flash memories. Electronics 2020, 10, 38. [Google Scholar] [CrossRef]
- Jang, J.; Kim, H.S.; Cho, W.; Cho, H.; Kim, J.; Shim, S.I.; Jang, Y.; Jeong, J.H.; Son, B.K.; Kim, D.W.; et al. Vertical cell array using TCAT(Terabit Cell Array Transistor) technology for ultra-high density NAND flash memory. In Proceedings of the 2009 Symposium on VLSI Technology, Kyoto, Japan, 15–17 June 2009; pp. 192–193. [Google Scholar] [CrossRef]
- Han, S.; Jeong, Y.; Jhon, H.; Kang, M. Investigation of inhibited channel potential of 3D NAND flash memory according to word-line location. Electronics 2020, 9, 268. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, M. Down-coupling phenomenon of floating channel in 3D NAND flash memory. IEEE Electron Device Lett. 2016, 37, 1566–1569. [Google Scholar] [CrossRef]
- Ryu, G.; Kim, H.; Lee, J.; Kang, M. Analysis of channel potential recovery according to the back pattern in 3D NAND flash memory. Appl. Sci. 2023, 3, 7. [Google Scholar] [CrossRef]
- Giulianini, M.; Malavena, G.; Compagnoni, C.M.; Spinelli, A.S. Time Dynamics of the Down-Coupling Phenomenon in 3-D NAND Strings. IEEE Trans. Electron Devices 2022, 69, 6757–6762. [Google Scholar] [CrossRef]
- Kang, M.; Kim, Y. Natural local self-boosting effect in 3D NAND flash memory. IEEE Electron. Device Lett. 2017, 38, 1236–1239. [Google Scholar] [CrossRef]
- Cho, T.; Kim, H.; Kang, M. Inhibited channel potential of 3D NAND flash memory string according to transient time. Appl. Sci. 2023, 2, 24. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, M. Predictive modeling of channel potential in 3-D NAND flash memory. IEEE Trans. Electron Devices 2014, 61, 3901–3904. [Google Scholar] [CrossRef]
- TCAD Sentaurus Device User Guide, Version 2015; Synopsys: Mountain View, CA, USA, 2015.
- Park, K.-T.; Nam, S.; Kim, D.; Kwak, P.; Lee, D.; Choi, Y.-H.; Choi, M.-H.; Kwak, D.-H.; Kim, D.-H.; Kim, M.-S.; et al. Three- dimensional 128 Gb MLC vertical NAND flash memory with 24-WL stacked layers and 50 MB/s high-speed programming. IEEE J. Solid-State Circuits 2015, 50, 204–213. [Google Scholar] [CrossRef]
- Kim, Y.; Yun, J.-G.; Park, S.H.; Kim, W.; Seo, J.Y.; Kang, M.; Ryoo, K.-C.; Oh, J.-H.; Lee, J.-H.; Shin, H.; et al. Three-dimensional NAND flash architecture design based on single-crystalline stacked array. IEEE Trans. Electron Devices 2011, 59, 35–45. [Google Scholar] [CrossRef]
- Kang, M.; Hahn, W.; Park, I.H.; Song, Y.; Lee, H.; Choi, K.; Lim, Y.; Joe, S.-M.; Chae, D.H.; Shin, H. A compact model for channel coupling in sub-30 nm NAND flash memory device. Jpn. J. Appl. Phys. 2011, 50, 100204. [Google Scholar] [CrossRef]
Parameters | 3D NAND Flash Memory | BE-TOX |
---|---|---|
Gate length (WL) | 40 nm | 40 nm |
Gate length (SSL, GSL) | 150 nm | 150 nm |
Gate spacing | 30 nm | 30 nm |
Gate dielectrics | 4/8/8 nm | (1.5/1.9/1.5)/8/8 nm |
Channel hole diameter | 80 nm | 80 nm |
Poly-Si channel thickness | 10 nm | 10 nm |
Selected WL | WL8 | WL8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, T.; Jung, S.; Kang, M. Channel Potential of Bandgap-Engineered Tunneling Oxide (BE-TOX) in Inhibited 3D NAND Flash Memory Strings. Electronics 2024, 13, 1573. https://doi.org/10.3390/electronics13081573
Cho T, Jung S, Kang M. Channel Potential of Bandgap-Engineered Tunneling Oxide (BE-TOX) in Inhibited 3D NAND Flash Memory Strings. Electronics. 2024; 13(8):1573. https://doi.org/10.3390/electronics13081573
Chicago/Turabian StyleCho, Taeyoung, Sungyeop Jung, and Myounggon Kang. 2024. "Channel Potential of Bandgap-Engineered Tunneling Oxide (BE-TOX) in Inhibited 3D NAND Flash Memory Strings" Electronics 13, no. 8: 1573. https://doi.org/10.3390/electronics13081573
APA StyleCho, T., Jung, S., & Kang, M. (2024). Channel Potential of Bandgap-Engineered Tunneling Oxide (BE-TOX) in Inhibited 3D NAND Flash Memory Strings. Electronics, 13(8), 1573. https://doi.org/10.3390/electronics13081573