5G Radiation Source Location Based on Passive Virtual Aperture Technology by Single-Satellite
Abstract
:1. Introduction
2. The Signal Model and Principle of the Proposed Method
2.1. The Signal Model
- denote the slot, OFDM symbol and subcarrier number, respectively;
- denote the number of OFDM symbols per slot and the number of subcarriers;
- denotes the modulation symbols of subcarriers;
- denotes the subcarrier frequency;
- denotes the duration of an OFDM symbol;
- denotes a rectangular function representing the duration of a symbol.
2.2. Doppler Estimation Based on Improved GSS-FRFT
2.3. Effective Velocity and Location Estimation Method
Algorithm 1: Principle of effective velocity estimation method. |
Initialize: , Set the filters: Filter the processed signal and find the peak: if break else , end if return |
3. Analysis of the Method Performance
3.1. Analysis of Resolutions
3.2. Analysis of Computation Complexity
4. Simulation and Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
5G | 5th-Generation Mobile Communication Technology |
OFDM | Orthogonal Frequency Division Multiplexing |
GSS-FRFT | Golden Section search-fractional Fourier transform |
6G | 6th-Generation Mobile Communication Technology |
DOA | Direction of arrival |
TDOA | Time difference of arrival |
FDOA | Frequency difference of arrival |
CBF | Conventional beamformer |
MUSIC | Multiple signal classification |
MLE | Maximum likelihood estimator |
EMVS | Electromagnetic vector sensor |
DDR | Differential Doppler rate |
LSE | Least squares estimator |
References
- Soldo, Y.; Le Vine, D.M.; Bringer, A.; de Matthaeis, P.; Oliva, R.; Johnson, J.T.; Piepmeier, J.R. Location of radio-frequency interference sources using the SMAP L-band radiometer. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6854–6866. [Google Scholar] [CrossRef]
- Huang, J.H.; Barr, M.N.; Garry, J.L.; Smith, G.E. Subarray Processing for Passive Radar Localization. In Proceedings of the IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017; pp. 248–252. [Google Scholar]
- Wu, G.; Guo, F.; Zhang, M. Direct position determination: An overview. J. Radars 2020, 9, 998–1013. [Google Scholar]
- Maghraby, A.K.S.E.; Park, H.; Camps, A.; Grubišić, A.; Colombo, C.; Tatnall, A. Phase and Baseline Calibration for Microwave Interferometric Radiometers Using Beacons. IEEE Trans. Geosci. Remote Sens. 2019, 58, 5242–5253. [Google Scholar] [CrossRef]
- Dempster, A.G.; Cetin, E. Interference localization for satellite navigation systems. Proc. IEEE 2016, 104, 1318–1326. [Google Scholar] [CrossRef]
- Eranti, P.K.; Barkana, B.D. An Overview of Direction-of-Arrival Estimation Methods Using Adaptive Directional Time-Frequency Distributions. Electronics 2022, 11, 1321. [Google Scholar] [CrossRef]
- Chen, T.; Shen, M.Y.; Guo, L.M.; Hu, X.J. A gridless DOA estimation algorithm based on unsupervised deep learning. Digit. Signal Process. 2023, 133, 103823. [Google Scholar] [CrossRef]
- Cai, C.X.; Huang, G.J.; Wen, F.Q.; Wang, X.H.; Wang, L. 2D-DOA Estimation for EMVS Array with Nonuniform Noise. Int. J. Antennas Propag. 2021, 2021, 9053864. [Google Scholar] [CrossRef]
- Wen, F.Q.; Shi, J.P.; Gui, G.; Gacanin, H.; Dobre, O.A. 3-D Positioning Method for Anonymous UAV Based on Bistatic Polarized MIMO Radar. IEEE Internet Things J. 2023, 10, 815–827. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Zhang, S.S. Passive Location Based on an Accurate Doppler Measurement by Single Satellite. In Proceedings of the IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017; pp. 1424–1427. [Google Scholar]
- Lopez, R.; Malarde, J.P.; Royer, F.; Gaspar, P. Improving argos Doppler location using multiple-model Kalman filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4744–4755. [Google Scholar] [CrossRef]
- Liu, Z.X.; Wang, R.; Zhao, J. Computationally efficient TDOA and FDOA estimation algorithm in passive emitter localisation. IET Radar Sonar Navig. 2019, 13, 1731–1740. [Google Scholar] [CrossRef]
- Liu, C.; Yun, J.; Su, J. Direct solution for fixed source location using well-posed TDOA and FDOA measurements. J. Syst. Eng. Electron. 2020, 31, 666–673. [Google Scholar]
- Wang, H.; Li, L.P. An effective localization algorithm for moving sources. EURASIP J. Adv. Signal Process. 2021, 2021, 32. [Google Scholar] [CrossRef]
- Ma, G.N.; Huang, Z.J.; Wang, M.; Ji, Z.Y.; Li, X.L.; Shen, B.; Tian, J. Performance Analysis and Sensor-Target Geometry Optimization for TOA and TDOA-Based Hybrid Source Localization Method. Appl. Sci. 2022, 12, 12977. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Wang, J.H.; Ba, B.; Wang, D.M. A Novel Direct Position Determination Algorithm for Orthogonal Frequency Division Multiplexing Signals Based on the Time and Angle of Arrival. IEEE Access 2017, 5, 25312–25321. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Li, J.Q.; Chen, S.J. 5G NR Positioning Technology and Its Deployment Scheme. ZTE Technol. J. 2021, 27, 49–53. [Google Scholar]
- Wang, Y.; Sun, G.; Wang, Y.; Zhang, Z.; Xing, M.; Yang, X. A high-resolution and high-precision passive positioning system based on synthetic aperture technique. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5230613. [Google Scholar] [CrossRef]
- Zhang, L.; Huan, H.; Tao, R.; Wang, Y. Emitter Localization Algorithm Based on Passive Synthetic Aperture. IEEE Trans. Aerosp. Electron. Syst. 2020, 58, 998–1013. [Google Scholar] [CrossRef]
- Li, A.; Huan, H.; Tao, R.; Zhang, L. Passive synthetic aperture high-precision radiation source location by single satellite. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4010105. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Yang, Q. Passive Location for 5G OFDM Radiation Sources Based on Virtual Synthetic Aperture. Remote Sens. 2023, 15, 1695. [Google Scholar] [CrossRef]
- Aldimashki, O.; Serbes, A. Performance of Chirp Parameter Estimation in the Fractional Fourier Domains and an Algorithm for Fast Chirp-Rate Estimation. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3685–3700. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, L.D. LFM signal optimization time-fractional frequency analysis: Principles, method and application. Digit. Signal Process. 2022, 126, 103505. [Google Scholar] [CrossRef]
- Zhang, N.; Tao, R.; Shan, T.; Wang, Y. Analysis of the Resolution of the Linear Frequency Modulated Signal Based on the Fractional Fourier Transform. Acta Electron. Sin. 2007, 35, 8–11. [Google Scholar]
Parameters | Values |
---|---|
Center frequency | 29 GHz |
Subcarrier interval | 30 kHz |
Bandwidth | 50 MHz |
Sampling frequency | 122.88 MHz |
Modulation | 16QAM |
Antenna aperture | 5 m |
SNR | 5 dB |
Inclination | 49 deg |
Semimajor | 6876 km |
Eccentricity | 0 |
Source location | (−1821.6, 3766.26, 4799.15) km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Zhang, X.; Wang, X.; Yang, Q. 5G Radiation Source Location Based on Passive Virtual Aperture Technology by Single-Satellite. Electronics 2024, 13, 2874. https://doi.org/10.3390/electronics13142874
Zhang T, Zhang X, Wang X, Yang Q. 5G Radiation Source Location Based on Passive Virtual Aperture Technology by Single-Satellite. Electronics. 2024; 13(14):2874. https://doi.org/10.3390/electronics13142874
Chicago/Turabian StyleZhang, Tong, Xin Zhang, Xiangyuan Wang, and Qiang Yang. 2024. "5G Radiation Source Location Based on Passive Virtual Aperture Technology by Single-Satellite" Electronics 13, no. 14: 2874. https://doi.org/10.3390/electronics13142874