SMWE: A Framework for Secure and Makespan-Oriented Workflow Execution in Serverless Computing
Abstract
:1. Introduction
- We adopt the idea of dynamics and diversity to design a new approach for protecting functions from attacks in serverless workflow.
- We propose the SMAM to cover the complexity attack scenarios in serverless workflows. Additionally, the security and makespan of the serverless workflow are analyzed based on the SMAM.
- We consider deploying the proposed defense techniques selectively to functions in a serverless workflow. Additionally, we propose a distribution-optimization-based algorithm to obtain the optimal workflow defense strategy and function scheduling strategy.
- We implement our framework based on Kubernetes and Fission. Rigorous evaluations underscore that SMWE significantly enhances the security of serverless workflows while incurring minimal overhead in terms of execution time.
2. Related Work
2.1. Serverless Security
2.2. Workflow Scheduling
2.3. MTD
3. Security Techniques Design
3.1. The Threats of Functions in Serverless Computing
3.2. Key Defense Techniques
4. SMAM Model
4.1. Serverless Workflow and Attackers’ Behavior Pattern
4.2. Analytical Modeling
5. Secure and Makespan-Aware Workflow Scheduling Algorithm
5.1. Problem Analysis
5.2. Heuristic Solution
Algorithm 1 Proposed Algorithm |
Require: Workflow DAG , available running environments , security weight . |
|
6. SMWE Design and Implementation
6.1. Overview
6.2. Implementation Detail
7. Experiments and Discussion
7.1. Experimental Setup
7.1.1. Comparison Algorithms
7.1.2. Workflow Applications
7.2. Effectiveness Evaluation
7.3. Scalability Evaluation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SMWE | Secure and Makespan-oriented Workflow Execution |
SMAM | Secure and Makespan-oriented Analytical Model |
MTD | Moving Target Defense |
CKC | Cyber Kill Chain |
HEFT | Heterogeneous Earliest Finish Time |
OS | Operating System |
VM | Virtual Machine |
CVE | Common Vulnerabilities and Exposures |
CVSS | Common Vulnerability Scoring System |
DAG | Directed Acyclic Graph |
CSHEFT | Cold-Start-based Heterogeneous Earliest Finish Time |
RSHEFT | Random-Start-based Heterogeneous Earliest Finish Time |
References
- Baldini, I.; Castro, P.; Chang, K.; Cheng, P.; Fink, S.; Ishakian, V.; Mitchell, N.; Muthusamy, V.; Rabbah, R.; Slominski, A. Serverless Computing: Current Trends and Open Problems. In Research Advances in Cloud Computing; Springer: Singapore, 2017. [Google Scholar]
- Aditya, P.; Akkus, I.E.; Beck, A.; Chen, R.; Hilt, V.; Rimac, I.; Satzke, K.; Stein, M. Will serverless computing revolutionize NFV? Proc. IEEE 2019, 107, 667–678. [Google Scholar] [CrossRef]
- Yan, M.; Castro, P.; Cheng, P.; Isahagian, V. Building a chatbot with serverless computing. In Proceedings of the 1st International Workshop on Mashups of Things and APIs, Trento, Italy, 12–13 December 2016. [Google Scholar]
- Gimenez-Alventosa, V.; Molto, G.; Caballer, M. A framework and a performance assessment for serverless MapReduce on AWS Lambda. Future Gener. Comput. Syst. 2019, 97, 259–274. [Google Scholar] [CrossRef]
- Malawski, M.; Gajek, A.; Zima, A.; Balis, B.; Figiela, K. Serverless execution of scientific workflows: Experiments with HyperFlow, AWS Lambda and Google Cloud Functions. Future Gener. Comput. Syst. 2017, 110, 502–514. [Google Scholar] [CrossRef]
- Versluis, L.; Matha, R.; Talluri, S.; Hegeman, T.; Prodan, R.; Deelman, E.; Iosup, A. The workflow trace archive: Open-access data from public and private computing infrastructures. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 2170–2184. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.; Wang, W.; Liang, H.; Huo, S. INHIBITOR: An intrusion tolerant scheduling algorithm in cloud-based scientific workflow system. Future Gener. Comput. Syst. 2021, 114, 272–284. [Google Scholar] [CrossRef]
- Prandini, M.; Ramilli, M. Return-oriented programming. IEEE Secur. Priv. 2012, 10, 84–87. [Google Scholar] [CrossRef]
- Lin, C.; Khazaei, H. Modeling and optimization of performance and cost of serverless applications. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 615–632. [Google Scholar] [CrossRef]
- Sankaran, A.; Datta, P.; Bates, A. Workflow integration alleviates identity and access management in serverless computing. In Proceedings of the Annual Computer Security Applications Conference, Austin, TX, USA, 7–11 December 2020. [Google Scholar]
- Jonas, E.; Schleier-Smith, J.; Sreekanti, V.; Tsai, C.C.; Khandelwal, A.; Pu, Q.; Shankar, V.; Carreira, J.; Krauth, K.; Yadwadkar, N. Cloud programming simplified: A berkeley view on serverless computing. arXiv 2019, arXiv:1902.03383. [Google Scholar]
- Cho, J.H.; Sharma, D.P.; Alavizadeh, H.; Yoon, S.; Ben-Asher, N.; Moore, T.J.; Kim, D.S.; Lim, H.; Nelson, F.F. Toward proactive, adaptive defense: A survey on moving target defense. IEEE Commun. Surv. Tutor. 2020, 22, 709–745. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.; Guo, Z.; Liu, W.; Yang, C. Protecting scientific workflows in clouds with an intrusion tolerant system. IET Inf. Secur. 2019, 14, 157–165. [Google Scholar] [CrossRef]
- Chen, Z.; Zhan, Z.; Lin, Y.; Gong, Y.; Gu, T.; Zhao, F.; Yuan, H.; Chen, X.; Li, Q.; Zhang, J. Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach. IEEE Trans. Cybern. 2019, 49, 2912–2926. [Google Scholar] [CrossRef] [PubMed]
- Bardas, A.G.; Sundaramurthy, S.C.; Ou, X.; Deloach, S.A. MTD CBITS: Moving target defense for cloud-based IT systems. In Proceedings of the European Symposium on Research in Computer Security, Oslo, Norway, 11–15 September 2017. [Google Scholar]
- Gao, X.; Steenkamer, B.; Gu, Z.; Kayaalp, M.; Pendarakis, D.; Wang, H. A study on the security implications of information leakages in container clouds. IEEE Trans. Dependable Secur. Comput. 2021, 18, 174–191. [Google Scholar] [CrossRef]
- Jin, H.; Li, Z.; Zou, D.; Yuan, B. DSEOM: A framework for dynamic security evaluation and optimization of MTD in container-based cloud. IEEE Trans. Dependable Secur. Comput. 2019, 18, 1125–1136. [Google Scholar] [CrossRef]
- Arnautov, S.; Trach, B.; Gregor, F.; Knauth, T.; Martin, A.; Priebe, C.; Lind, J.; Muthukumaran, D.; O’Keeffe, D.; Stillwell, M.; et al. SCONE: Secure Linux containers with intel SGX. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016. [Google Scholar]
- Bila, N.; Dettori, P.; Kanso, A.; Watanabe, Y.; Youssef, A. Leveraging the serverless architecture for securing linux containers. In Proceedings of the 37th IEEE International Conference on Distributed Computing Systems Workshops, Atlanta, GA, USA, 5–8 June 2017. [Google Scholar]
- Li, X.; Leng, X.; Chen, Y. Securing serverless computing: Challenges, solutions, and opportunities. IEEE Netw. 2023, 37, 166–173. [Google Scholar] [CrossRef]
- Alpernas, K.; Flanagan, C.; Fouladi, S.; Ryzhyk, L.; Sagiv, M.; Schmitz, T.; Winstein, K. Secure serverless computing using dynamic information flow control. Proc. ACM Program. Lang. 2018, 2, 118. [Google Scholar] [CrossRef]
- Elgamal, T. Costless: Optimizing cost of serverless computing through function fusion and placement. In Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing, Seattle, WA, USA, 25–27 October 2018. [Google Scholar]
- Topcuoglu, H.; Hariri, S.; Wu, M.Y. Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zhan, Z.H.; Yu, W.J.; Lin, Y.; Zhang, J.; Gu, T.L.; Zhang, J. Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling. IEEE Trans. Cybern. 2020, 50, 2715–2729. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhu, X.; Qiu, D.; Liu, L.; Du, Z. Scheduling for workflows with security-sensitive intermediate data by selective tasks duplication in clouds. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 2674–2688. [Google Scholar] [CrossRef]
- Li, Z.; Ge, J.; Yang, H.; Huang, L.; Hu, H.; Hu, H.; Luo, B. A security and cost aware scheduling algorithm for heterogeneous tasks of scientific workflow in clouds. Future Gener. Comput. Syst. 2016, 65, 140–152. [Google Scholar] [CrossRef]
- Suresh, A.; Gandhi, A. FnSched: An efficient scheduler for serverless functions. In Proceedings of the 5th International Workshop on Serverless Computing, Davis, CA, USA, 9–13 December 2019. [Google Scholar]
- Tariq, A.; Pahl, A.; Nimmagadda, S.; Rozner, E.; Lanka, S. Sequoia: Enabling quality-of-service in serverless computing. In Proceedings of the SoCC ’20: ACM Symposium on Cloud Computing, Virtual Event, USA, 19–21 October 2020. [Google Scholar]
- Albanese, M.; Benedictis, A.D.; Jajodia, S.; Sun, K. A moving target defense mechanism for MANETs based on identity virtualization. In Proceedings of the IEEE Conference on Communications and Network Security, National Harbor, MD, USA, 14–16 October 2013. [Google Scholar]
- Meier, R.; Tsankov, P.; Lenders, V.; Vanbever, L.; Vechev, M.T. NetHide: Secure and practical network topology obfuscation. In Proceedings of the 27th USENIX Security Symposium, Baltimore, MD, USA, 15–17 August 2018. [Google Scholar]
- Carter, K.M.; Riordan, J.; Okhravi, H. A game theoretic approach to strategy determination for dynamic platform defenses. In Proceedings of the First ACM Workshop on Moving Target Defense, Scottsdale, AZ, USA, 7 November 2014. [Google Scholar]
- Han, Y.; Alpcan, T.; Chan, J.; Leckie, C.; Rubinstein, B.I.P. A game theoretical approach to defend against co-resident attacks in cloud computing: Preventing co-residence using semi-supervised learning. IEEE Trans. Inf. Forensics Secur. 2016, 11, 556–570. [Google Scholar] [CrossRef]
- Jackson, T.; Salamat, B.; Homescu, A.; Manivannan, K.; Franz, M. Compiler-Generated Software Diversity; Springer: Berlin/Heidelberg, Germany, 2011; pp. 77–98. [Google Scholar]
- Boehm, B.W. Software cost estimation meets software diversity. In Proceedings of the 39th International Conference on Software Engineering, Buenos Aires, Argentina, 20–28 May 2017. [Google Scholar]
- Li, X.; Zhang, L.; Wu, Y.; Liu, X.; Zhu, E.; Yi, H.; Wang, F.; Zhang, C.; Yang, Y. A novel workflow-level data placement strategy for data-sharing scientific cloud workflows. IEEE Trans. Serv. Comput. 2019, 12, 370–383. [Google Scholar] [CrossRef]
- Li, Z.; Jin, H.; Zou, D.; Yuan, B. Exploring new opportunities to defeat low-rate DDoS attack in container-based cloud environment. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 695–706. [Google Scholar] [CrossRef]
- Yuan, B.; Zhao, H.; Lin, C.; Zou, D.; Yang, L.T.; Jin, H.; He, L.; Yu, S. Minimizing financial cost of DDoS attack defense in clouds with fine-grained resource Management. IEEE Trans. Netw. Sci. Eng. 2020, 7, 2541–2554. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Zhang, Y.; Ristenpart, T.; Swift, M.M. Peeking behind the curtains of serverless platforms. In Proceedings of the 2018 USENIX Annual Technical Conference, Boston, MA, USA, 11–13 July 2018. [Google Scholar]
- Hong, J.B.; Kim, D.S. Assessing the effectiveness of moving target defenses using security models. IEEE Trans. Dependable Secur. Comput. 2016, 13, 163–177. [Google Scholar] [CrossRef]
- Cui, J.; Lu, Q.; Zhong, H.; Tian, M.; Liu, L. A load-balancing mechanism for distributed SDN control plane using response time. IEEE Trans. Netw. Serv. Manag. 2018, 15, 1197–1206. [Google Scholar] [CrossRef]
- National Vulnerability Database. 2021. Available online: https://nvd.nist.gov/vuln (accessed on 5 January 2021).
- Kubernetes. 2021. Available online: https://kubernetes.io (accessed on 3 September 2021).
- Fission. 2021. Available online: https://fission.io (accessed on 10 August 2021).
- Wang, Y.W.; Jiang-Xing, W.U.; Guo, Y.F.; Hong-Chao, H.U.; Liu, W.Y.; Cheng, G.Z. Scientific workflow execution system based on mimic defense in the cloud environment. Front. Inf. Technol. Electron. Eng. 2018, 19, 1522–1536. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.; Guo, Z.; Liu, W.; Yang, C. Securing the intermediate data of scientific workflows in clouds with ACISO. IEEE Access 2019, 7, 126603–126617. [Google Scholar] [CrossRef]
- Niu, M.; Cheng, B.; Feng, Y.; Chen, J. GMTA: A geo-aware multi-agent task allocation approach for scientific sorkflows in container-based cloud. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1568–1581. [Google Scholar] [CrossRef]
CVE ID | Author | Exploitability Metrics | Exploit Code Maturity |
---|---|---|---|
CVE-2019-13272 | METASPLOIT | 1.8 | 4.2 |
CVE-2019-13272 | bcoles | 1.0 | 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Zhang, S.; Liu, X.; Cheng, G.; Ma, H.; Wang, Q. SMWE: A Framework for Secure and Makespan-Oriented Workflow Execution in Serverless Computing. Electronics 2024, 13, 3246. https://doi.org/10.3390/electronics13163246
Liang H, Zhang S, Liu X, Cheng G, Ma H, Wang Q. SMWE: A Framework for Secure and Makespan-Oriented Workflow Execution in Serverless Computing. Electronics. 2024; 13(16):3246. https://doi.org/10.3390/electronics13163246
Chicago/Turabian StyleLiang, Hao, Shuai Zhang, Xinlei Liu, Guozhen Cheng, Hailong Ma, and Qingfeng Wang. 2024. "SMWE: A Framework for Secure and Makespan-Oriented Workflow Execution in Serverless Computing" Electronics 13, no. 16: 3246. https://doi.org/10.3390/electronics13163246
APA StyleLiang, H., Zhang, S., Liu, X., Cheng, G., Ma, H., & Wang, Q. (2024). SMWE: A Framework for Secure and Makespan-Oriented Workflow Execution in Serverless Computing. Electronics, 13(16), 3246. https://doi.org/10.3390/electronics13163246