OFPP-GAN: One-Shot Federated Personalized Protection–Generative Adversarial Network
Abstract
:1. Introduction
- To better balance the privacy and usability of GAN models, we introduce dual personalized differential privacy in federated GAN model training, adjusting noise scales and clipping thresholds based on gradient variations in model training. This marks the first application of personalized differential privacy in federated learning with GAN, ensuring the usability of GAN models without compromising privacy protection capabilities.
- To reduce the substantial communication overhead during federated learning training and prevent malicious attackers from targeting the model, we introduce the one-shot federated learning paradigm. This method significantly reduces communication overhead by minimizing frequent data transmissions during training, further enhancing the model’s privacy protection capabilities.
- Through experiments, we demonstrate that our method outperforms state-of-the-art techniques in training GAN models. Our method not only generates high-quality synthetic images but also reduces communication overhead during training, all without compromising the intensity of privacy protection or affecting the overall computational cost of the system.
2. Preliminaries
2.1. Generative Adversarial Network
2.2. Differential Privacy
2.3. Federated Learning
3. Related Works
3.1. Privacy Protection Scheme Based on GAN
3.2. Federated Learning Scheme Based on GAN
3.3. One-Shot Federated Learning
4. Scheme Design
4.1. Personalized Noise Addition
4.2. Personalized Clipping Threshold Selection
4.3. One-Shot Federated Learning
4.4. Global Algorithm Design
4.5. Differential Privacy Constraint Design
Algorithm 1 One-shot Federated Personalized Protection–Generative Adversarial Network (OFPP-GAN). |
|
5. Experiments
5.1. Experimental Settings
5.1.1. Training Environment
5.1.2. Evaluation Indicators
5.1.3. Datasets
5.2. Compare Algorithms
5.3. Experimental Results and Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems 27; Curran Associates, Inc.: Boston, MA, USA, 2014. [Google Scholar]
- Ciresan, D.; Giusti, A.; Gambardella, L.; Schmidhuber, J. Deep neural networks segment neuronal membranes in electron microscopy images. In Advances in Neural Information Processing Systems 25; Curran Associates, Inc.: Boston, MA, USA, 2012. [Google Scholar]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Zhu, J.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Huang, J.; Wu, C. Privacy leakage in gan enabled load profile synthesis. In Proceedings of the 2022 IEEE Sustainable Power and Energy Conference (iSPEC), Perth, Australia, 4–7 December 2022; pp. 1–5. [Google Scholar]
- Dwork, C. Differential privacy. In International Colloquium on Automata, Languages, and Programming; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–12. [Google Scholar]
- Xie, L.; Lin, K.; Wang, S.; Wang, F.; Zhou, J. Differentially private generative adversarial network. arXiv 2018, arXiv:1802.06739. [Google Scholar]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.y. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics, Boston, MA, USA, 24–25 October 2017; pp. 1273–1282. [Google Scholar]
- Zhu, T.; Li, G.; Zhou, W.; Philip, S.Y. Differentially private data publishing and analysis: A survey. IEEE Trans. Knowl. Data Eng. 2017, 29, 1619–1638. [Google Scholar] [CrossRef]
- Niu, B.; Chen, Y.; Wang, B.; Wang, Z.; Li, F.; Cao, J. Adapdp: Adaptive personalized differential privacy. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10. [Google Scholar]
- Wei, K.; Deng, C.; Yang, X.; Li, M. Incremental embedding learning via zero-shot translation. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021; Volume 35, pp. 10254–10262. [Google Scholar]
- Hitaj, B.; Ateniese, G.; Perez-Cruz, F. Deep models under the gan: Information leakage from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 603–618. [Google Scholar]
- Fredrikson, M.; Lantz, E.; Jha, S.; Lin, S.; Page, D.; Ristenpart, T. Privacy in pharmacogenetics: An {End-to-End} case study of personalized warfarin dosing. In Proceedings of the 23rd USENIX Security Symposium (USENIX Security 14), San Diego, CA, USA, 20–22 August 2014; pp. 17–32. [Google Scholar]
- Horváth, G.; Kerekes, K.; Nyitrai, V.; Balazs, G.; Berisha, H.; Herczeg, G. Exploratory behaviour divergence between surface populations, cave colonists and a cave population in the water louse, asellus aquaticus. Behav. Ecol. Sociobiol. 2023, 77, 15. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Q.; Mou, G.; Wu, C. Dpwgan: High-quality load profiles synthesis with differential privacy guarantees. IEEE Trans. Smart Grid 2022, 14, 3283–3295. [Google Scholar] [CrossRef]
- Pan, K.; Gong, M.; Gao, Y. Privacy-enhanced generative adversarial network with adaptive noise allocation. Knowl.-Based Syst. 2023, 272, 110576. [Google Scholar] [CrossRef]
- Gwon, H.; Ahn, I.; Kim, Y.; Kang, H.J.; Seo, H.; Choi, H.; Cho, H.N.; Kim, M.; Han, J.; Kee, G.; et al. Ldp-gan: Generative adversarial networks with local differential privacy for patient medical records synthesis. Comput. Biol. Med. 2024, 168, 107738. [Google Scholar] [CrossRef]
- Jordon, J.; Yoon, J.; Schaar, M.V.D. Pate-gan: Generating synthetic data with differential privacy guarantees. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Chen, J.; Wang, W.H.; Gao, H.; Shi, X. Par-gan: Improving the generalization of generative adversarial networks against membership inference attacks. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Virtual Event, 14–18 August 2021; pp. 127–137. [Google Scholar]
- Yan, X.; Cui, B.; Xu, Y.; Shi, P.; Wang, Z. A method of information protection for collaborative deep learning under gan model attack. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 18, 871–881. [Google Scholar] [CrossRef]
- Chen, D.; Yu, N.; Zhang, Y.; Fritz, M. Gan-leaks: A taxonomy of membership inference attacks against generative models. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, 9–13 November 2020; pp. 343–362. [Google Scholar]
- Xu, C.; Ren, J.; Zhang, D.; Zhang, Y.; Qin, Z.; Ren, K. Ganobfuscator: Mitigating information leakage under gan via differential privacy. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2358–2371. [Google Scholar] [CrossRef]
- Mirjalili, V.; Raschka, S.; Ross, A. Privacynet: Semi-adversarial networks for multi-attribute face privacy. IEEE Trans. Image Process. 2020, 29, 9400–9412. [Google Scholar] [CrossRef]
- Qiao, F.; Li, Z.; Kong, Y. A privacy-aware and incremental defense method against gan-based poisoning attack. IEEE Trans. Comput. Soc. Syst. 2023, 11, 1708–1721. [Google Scholar] [CrossRef]
- Xiong, Z.; Li, W.; Han, Q.; Cai, Z. Privacy-preserving auto-driving: A gan-based approach to protect vehicular camera data. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2019; pp. 668–677. [Google Scholar]
- Chai, X.; Wang, Y.; Chen, X.; Gan, Z.; Zhang, Y. Tpe-gan: Thumbnail preserving encryption based on gan with key. IEEE Signal Process. Lett. 2022, 29, 972–976. [Google Scholar] [CrossRef]
- Wang, Z.; Song, M.; Zhang, Z.; Song, Y.; Wang, Q.; Qi, H. Beyond inferring class representatives: User-level privacy leakage from federated learning. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 2512–2520. [Google Scholar]
- Zhang, L.; Shen, B.; Barnawi, A.; Xi, S.; Kumar, N.; Wu, Y. Feddpgan: Federated differentially private generative adversarial networks framework for the detection of covid-19 pneumonia. Inf. Syst. Front. 2021, 23, 1403–1415. [Google Scholar] [CrossRef]
- Xin, B.; Yang, W.; Geng, Y.; Chen, S.; Wang, S.; Huang, L. Private fl-gan: Differential privacy synthetic data generation based on federated learning. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 2927–2931. [Google Scholar]
- Cao, X.; Sun, G.; Yu, H.; Guizani, M. Perfed-gan: Personalized federated learning via generative adversarial networks. IEEE Internet Things J. 2022, 10, 3749–3762. [Google Scholar] [CrossRef]
- Hardy, C.; Merrer, E.L.; Sericola, B. Md-gan: Multi-discriminator generative adversarial networks for distributed datasets. In Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 20–24 May 2019; pp. 866–877. [Google Scholar]
- Rasouli, M.; Sun, T.; Rajagopal, R. Fedgan: Federated generative adversarial networks for distributed data. arXiv 2020, arXiv:2006.07228. [Google Scholar]
- Mugunthan, V.; Gokul, V.; Kagal, L.; Dubnov, S. Bias-free fedgan: A federated approach to generate bias-free datasets. arXiv 2021, arXiv:2103.09876. [Google Scholar]
- Zhao, Z.; Birke, R.; Kunar, A.; Chen, L.Y. Fed-tgan: Federated learning framework for synthesizing tabular data. arXiv 2021, arXiv:2108.07927. [Google Scholar]
- Guha, N.; Talwalkar, A.; Smith, V. One-shot federated learning. arXiv 2019, arXiv:1902.11175. [Google Scholar]
- Kasturi, A.; Ellore, A.R.; Hota, C. Fusion learning: A one shot federated learning. In Proceedings of the Computational Science–ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, 3–5 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 424–436. [Google Scholar]
- Song, R.; Liu, D.; Chen, D.Z.; Festag, A.; Trinitis, C.; Schulz, M.; Knoll, A. Federated learning via decentralized dataset distillation in resource-constrained edge environments. In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 18–23 June 2023; pp. 1–10. [Google Scholar]
- Li, Q.; He, B.; Song, D. Practical one-shot federated learning for cross-silo setting. arXiv 2020, arXiv:2010.01017. [Google Scholar]
- Fredrikson, M.; Jha, S.; Ristenpart, T. Model inversion attacks that exploit confidence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 1322–1333. [Google Scholar]
- Hu, H.; Salcic, Z.; Sun, L.; Dobbie, G.; Yu, P.S.; Zhang, X. Membership inference attacks on machine learning: A survey. ACM Comput. Surv. (CSUR) 2022, 54, 235. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, C.; Li, B.; Lyu, L.; Wu, S.; Ding, S.; Shen, C.; Wu, C. Dense: Data-free one-shot federated learning. Adv. Neural Inf. Process. Syst. 2022, 35, 21414–21428. [Google Scholar]
- Wei, K.; Li, J.; Ding, M.; Ma, C.; Yang, H.H.; Farokhi, F.; Jin, S.; Quek, T.Q.S.; Poor, H.V. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3454–3469. [Google Scholar] [CrossRef]
- Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier GANs. In Proceedings of the ICML’17: Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 2642–2651. [Google Scholar]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2017; Volume 30. [Google Scholar]
Notation | Definition |
---|---|
Real data sample | |
Synthetic sample | |
Noise scale | |
C | Clipping threshold |
Learning rate | |
T | Number of iterations per client |
P | Set of data-holders |
Minimum threshold for noise scale | |
Generator parameters | |
w | Discriminator parameters |
Gradient of the discriminator | |
Gradient of the generator | |
n | Number of samples |
RMSProp | Root Mean Square Propagation optimizer |
Dataset | Algorithm | IS | FID | ACC | IS | FID | ACC |
---|---|---|---|---|---|---|---|
MNIST | RealData | 9.88 | - | 99.6% | 9.88 | - | 99.6% |
GAN | 8.83 | 46.07 | 84% | 8.83 | 46.07 | 84% | |
DPGAN | 7.37 | 140.32 | 66% | 8.12 | 87.69 | 73% | |
FedDPGAN | 7.59 | 63.82 | 60% | 7.84 | 55.88 | 67% | |
GANobfuscator | 8.06 | 67.26 | 71% | 8.49 | 53.27 | 75% | |
OFPP-GAN | 8.14 | 60.66 | 78% | 8.62 | 50.72 | 81% | |
FashionMNIST | RealData | 9.68 | - | 92.27% | 9.68 | - | 92.27% |
GAN | 8.48 | 57.81 | 81% | 8.48 | 57.81 | 82% | |
DPGAN | 7.24 | 189.38 | 55% | 7.67 | 124.51 | 68% | |
FedDPGAN | 7.63 | 135.23 | 71% | 8.00 | 72.29 | 75% | |
GANobfuscator | 7.01 | 136.54 | 59% | 7.72 | 132.13 | 62% | |
OFPP-GAN | 7.79 | 94.97 | 73% | 7.89 | 76.42 | 77% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Zhou, C.; Tian, H.; Chen, Z. OFPP-GAN: One-Shot Federated Personalized Protection–Generative Adversarial Network. Electronics 2024, 13, 3423. https://doi.org/10.3390/electronics13173423
Jiang Z, Zhou C, Tian H, Chen Z. OFPP-GAN: One-Shot Federated Personalized Protection–Generative Adversarial Network. Electronics. 2024; 13(17):3423. https://doi.org/10.3390/electronics13173423
Chicago/Turabian StyleJiang, Zhenyu, Changli Zhou, Hui Tian, and Zikang Chen. 2024. "OFPP-GAN: One-Shot Federated Personalized Protection–Generative Adversarial Network" Electronics 13, no. 17: 3423. https://doi.org/10.3390/electronics13173423