HCA-RFLA: A SAR Remote Sensing Ship Detection Based on Hierarchical Collaborative Attention Method and Gaussian Receptive Field-Driven Label Assignment Strategy
Abstract
:1. Introduction
- To address the issue that existing attention mechanisms overlook the correlation between adjacent layers in small target detection, we propose the Hierarchical Collaborative Attention (HCA) module, which enables the network to extract effective features of small targets and significantly improves detection accuracy.
- To enhance the network’s detection speed for ships in SAR images and address the imbalance between positive and negative samples for small targets, we propose a Gaussian Receptive Field-based Label Assignment (RFLA) strategy to effectively improve the network’s focus on small targets.
- We conduct experiments on the SSDD, HRSID, and SSD datasets. The results show that, compared to the traditional model, the HCA-RFLA achieves higher accuracy in small target detection.
2. Related Work
2.1. Traditional SAR Ship Detection Methods
2.2. Deep-Learning-Based SAR Ship Detection Methods
2.3. Label Assignment Strategy
3. Algorithmic Improvements
3.1. Integrated Attention Mechanism Module
3.2. Gaussian Receptive Field Based Label Assignment Strategy
3.3. Loss Function
4. Experiments and Analysis
4.1. Experimental Environment and Data Preparation
4.2. Evaluation Criterion
4.3. Experimental Results and Analysis
Comparative Experiments
4.4. Ablation Experiments
4.4.1. Module Ablation Experiment
4.4.2. Attention Module Ablation Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, S.; Wang, J. Ship Detection in SAR Images Based on Steady CFAR Detector and Knowledge-Oriented GBDT Classifier. Electronics 2024, 13, 2692. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, Z.; Tan, F.; Zhao, Y.; Zheng, H.; Zhang, W. RISTDnet: Robust Infrared Small Target Detection Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7000805. [Google Scholar] [CrossRef]
- Tian, T.; Zhou, F.; Li, Y.; Sun, B.; Fan, W.; Gong, C.; Yang, S. Performance Evaluation of Deception Against Synthetic Aperture Radar Based on Multifeature Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 103–115. [Google Scholar] [CrossRef]
- Zheng, H.; Xue, X.; Yue, R.; Liu, C.; Liu, Z. SAR Image Ship Target Detection Based on Receptive Field Enhancement Module and Cross-Layer Feature Fusion. Electronics 2024, 13, 167. [Google Scholar] [CrossRef]
- Zhou, X.; Li, T. Ship Detection in PolSAR Images Based on a Modified Polarimetric Notch Filter. Electronics 2023, 12, 2683. [Google Scholar] [CrossRef]
- Khan, A.; Khan, M.; Gueaieb, W.; El Saddik, A.; De Masi, G.; Karray, F. CamoFocus: Enhancing Camouflage Object Detection With Split-Feature Focal Modulation and Context Refinement. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024. [Google Scholar]
- Ren, X.; Bai, Y.; Liu, G.; Zhang, P. YOLO-Lite: An Efficient Lightweight Network for SAR Ship Detection. Remote Sens. 2023, 15, 3771. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, C.; Filaretov, V.F.; Yukhimets, D.A. Multi-Scale Ship Detection Algorithm Based on YOLOv7 for Complex Scene SAR Images. Remote Sens. 2023, 15, 2071. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Z.; Wen, J.; Lan, G.; Xiao, S. Small Ship Detection of SAR Images Based on Optimized Feature Pyramid and Sample Augmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7385–7392. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Zhang, X.; Shao, Z. Deform-FPN: A Novel FPN with Deformable Convolution for Multi-Scale SAR Ship Detection. In Proceedings of the IGARSS 2023–2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 5273–5276. [Google Scholar] [CrossRef]
- Khan, U.; Khan, M.; Elsaddik, A.; Gueaieb, W. Ddnet: Diabetic Retinopathy Detection System Using Skip Connection-Based Upgraded Feature Block. In Proceedings of the 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Jeju, Republic of Korea, 14–16 June 2023. [Google Scholar]
- Sun, Y.; Su, L.; Yuan, S.; Meng, H. DANet: Dual-Branch Activation Network for Small Object Instance Segmentation of Ship Images. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 6708–6720. [Google Scholar] [CrossRef]
- Zha, C.; Min, W.; Han, Q.; Xiong, X.; Wang, Q.; Xiang, H. SAR Ship Detection Based on Salience Region Extraction and Multi-Branch Attention. Int. J. Appl. Earth Obs. Geoinf. 2023, 123, 103489. [Google Scholar] [CrossRef]
- Dong, C.; Duoqian, M. Control Distance IoU and Control Distance IoU Loss for Better Bounding Box Regression. Pattern Recognit. 2023, 137, 109256. [Google Scholar] [CrossRef]
- Cai, D.; Zhang, Z.; Zhang, Z. Corner-Point and Foreground-Area IoU Loss: Better Localization of Small Objects in Bounding Box Regression. Sensors 2023, 23, 4961. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yao, X.; Wang, X.; Hong, D.; Cheng, G.; Han, J. Robust Few-Shot Aerial Image Object Detection via Unbiased Proposals Filtration. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5617011. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Jia, Z.; Liu, L.; Zhang, Z.; Wang, L. Diag-IoU Loss for Object Detection. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 7671–7683. [Google Scholar] [CrossRef]
- Li, Z.; Hou, B.; Wu, Z.; Ren, B.; Yang, C. FCOSR: A Simple Anchor-Free Rotated Detector for Aerial Object Detection. Remote Sens. 2023, 15, 5499. [Google Scholar] [CrossRef]
- Liang, Y.; Feng, J.; Zhang, X.; Zhang, J.; Jiao, L. MidNet: An Anchor-and-Angle-Free Detector for Oriented Ship Detection in Aerial Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5612113. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, F.; You, H. Unsupervised SAR Image Change Detection Based on Structural Consistency and CFAR Threshold Estimation. Remote Sens. 2023, 15, 1422. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, G.; Ma, L.; Li, L.; Mei, Q. SIFNet: A Self-Attention Interaction Fusion Network for Multisource Satellite Imagery Template Matching. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103247. [Google Scholar] [CrossRef]
- Chen, J.; Xie, H.; Zhang, L.; Hu, J.; Jiang, H.; Wang, G. SAR and Optical Image Registration Based on Deep Learning with Co-Attention Matching Module. Remote Sens. 2023, 15, 3879. [Google Scholar] [CrossRef]
- Zeng, T.; Zhang, T.; Shao, Z.; Xu, X.; Zhang, W.; Shi, J.; Jun, W.; Zhang, X. CFAR-DP-FW: A CFAR-Guided Dual-Polarization Fusion Framework for Large-Scene SAR Ship Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7242–7259. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Chen, H.; Li, Y. A Density Clustering-Based CFAR Algorithm for Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2024, 21, 4009505. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Wang, X.; Jiang, Z.; Li, Y. A Robust CFAR Algorithm Based on Superpixel Merging Operation for SAR Ship Detection. In Proceedings of the ACM Conference, New York, NY, USA, 13–17 May 2024. [Google Scholar] [CrossRef]
- Yasir, M.; Jianhua, W.; Mingming, X.; Hui, S.; Zhe, Z.; Shanwei, L.; Colak, A.T.I.; Hossain, M.S. Ship Detection Based on Deep Learning Using SAR Imagery: A Systematic Literature Review. Soft Comput. 2023, 27, 63–84. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Cheng, P.; Yu, Z.; Yu, L.; Chi, C. A Survey on Deep-Learning-Based Real-Time SAR Ship Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3218–3247. [Google Scholar] [CrossRef]
- Er, M.J.; Zhang, Y.; Chen, J.; Gao, W. Ship Detection with Deep Learning: A Survey. Artif. Intell. Rev. 2023, 56, 11825–11865. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Zeng, T.; Shi, J.; Shao, Z.; Zhang, T. Group-Wise Feature Fusion R-CNN for Dual-Polarization SAR Ship Detection. In Proceedings of the 2023 IEEE Radar Conference (RadarConf23), San Antonio, TX, USA, 1–5 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Jiang, M.; Gu, L.; Li, X.; Gao, F.; Jiang, T. Ship Contour Extraction From SAR Images Based on Faster R-CNN and Chan–Vese Model. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5203414. [Google Scholar] [CrossRef]
- Yang, J.-R.; Hao, L.-Y.; Liu, Y.; Zhang, Y. SLT-Net: Enhanced Mask R-CNN Network for Ship Long-Tailed Detection. In Proceedings of the 2023 IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON), Virtual, 8–10 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, N. Underwater Object Detection Method Based on Improved Faster R-CNN. Appl. Sci. 2023, 13, 2746. [Google Scholar] [CrossRef]
- Wen, G.; Cao, P.; Wang, H.; Chen, H.; Liu, X.; Xu, J.; Zaiane, O. MS-SSD: Multi-Scale Single Shot Detector for Ship Detection in Remote Sensing Images. Appl. Intell. 2023, 53, 1586–1604. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, P.; Ding, K.; Chen, Z.; Hu, K. Object Detection of Inland Waterway Ships Based on Improved SSD Model. Ships Offshore Struct. 2022, 18, 1192–1200. [Google Scholar] [CrossRef]
- Dhorajiya, A.; Rakhi, A.M.; Saranya, P. Ship Detection from Satellite Imagery Using RetinaNet with Instance Segmentation. In Proceedings of the International Conference on Recent Trends in Computing; Mahapatra, R.P., Peddoju, S.K., Roy, S., Parwekar, P., Eds.; Lecture Notes in Networks and Systems. Springer: Singapore, 2023; Volume 600. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, R.; Lin, A.; Jiang, D.; Wang, Y. A Feature Enhanced RetinaNet-Based Method for Instance-Level Ship Recognition. Eng. Appl. Artif. Intell. 2023, 126 Pt D, 107133. [Google Scholar] [CrossRef]
- Jian, P.; Guo, F.; Pan, C.; Wang, Y.; Yang, Y.; Li, Y. Interpretable Geometry Problem Solving Using Improved RetinaNet and Graph Convolutional Network. Electronics 2023, 12, 4578. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Su, H.; Gao, L.; Wang, T. Deep Learning for SAR Ship Detection: Past, Present and Future. Remote Sens. 2022, 14, 2712. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.-Y.; Xu, W.; Wang, H.; Hu, L. Vehicle–Pedestrian Detection Method Based on Improved YOLOv8. Electronics 2024, 13, 2149. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, J.; Zhuo, L.; Li, Y.; Tian, Q. Small Object Detection in Unmanned Aerial Vehicle Images Using Feature Fusion and Scaling-Based Single Shot Detector With Spatial Context Analysis. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 1758–1770. [Google Scholar] [CrossRef]
- Chen, Z.; Ji, H.; Zhang, Y.; Zhu, Z.; Li, Y. High-Resolution Feature Pyramid Network for Small Object Detection on Drone View. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 475–489. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Y. CSEF-Net: Cross-Scale SAR Ship Detection Network Based on Efficient Receptive Field and Enhanced Hierarchical Fusion. Remote Sens. 2024, 16, 622. [Google Scholar] [CrossRef]
- Cheng, S.; Zhu, Y.; Wu, S. Deep Learning Based Efficient Ship Detection from Drone-Captured Images for Maritime Surveillance. Ocean Eng. 2023, 285 Pt 2, 115440. [Google Scholar] [CrossRef]
- Wang, C.; Liu, J.; Zhang, L.; Chen, M.; Li, Y. SAR Ship Target Recognition via Multiscale Feature Attention and Adaptive-Weighed Classifier. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4003905. [Google Scholar] [CrossRef]
- Lyu, Z.; Wang, C.; Sun, X.; Zhou, Y.; Ni, X.; Yu, P. Real-Time Ship Detection System for Wave Glider Based on YOLOv5s-Lite-CBAM Model. Appl. Ocean Res. 2024, 144, 103833. [Google Scholar] [CrossRef]
- Wang, L.; Zhan, Y.; Lan, L.; Lin, X.; Tao, D.; Gao, X. DeIoU: Towards Distinguishable Box Prediction in Densely Packed Object Detection. IEEE Trans. Circuits Syst. Video Technol. 2024. [Google Scholar] [CrossRef]
- Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.; Huang, W. TOOD: Task-Aligned One-Stage Object Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 3490–3499. [Google Scholar] [CrossRef]
- Xu, C.; Wang, J.; Yang, W.; Yu, H.; Yu, L.; Xia, G.-S. Detecting Tiny Objects in Aerial Images: A Normalized Wasserstein Distance and a New Benchmark. ISPRS J. Photogramm. Remote Sens. 2022, 190, 79–93. [Google Scholar] [CrossRef]
- Xu, C.; Wang, J.; Yang, W.; Yu, H.; Yu, L.; Xia, G.S. RFLA: Gaussian Receptive Field Based Label Assignment for Tiny Object Detection. In Computer Vision—ECCV 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022; Volume 13669, pp. 526–543. [Google Scholar] [CrossRef]
- Li, F.; Sun, T.; Dong, P.; Wang, Q.; Li, Y.; Sun, C. MSF-CSPNet: A Specially Designed Backbone Network for Faster R-CNN. IEEE Access 2024, 12, 52390–52399. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. IEEE Trans. Cybern. 2022, 52, 8574–8586. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, W.; Wu, L.; Chen, S.; Hu, X.; Li, J.; Tang, J.; Yang, J. Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Vancouver, BC, Canada, 2020; Volume 33, pp. 21002–21012. [Google Scholar]
- Mao, A.; Mohri, M.; Zhong, Y. Cross-Entropy Loss Functions: Theoretical Analysis and Applications. In Proceedings of the 40th International Conference on Machine Learning; Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J., Eds.; PMLR: Honolulu, HI, USA, 2023; Volume 202, pp. 23803–23828. [Google Scholar]
- Li, J.; Qu, C.; Shao, J. Ship Detection in SAR Images Based on an Improved Faster R-CNN. In Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance Segmentation. IEEE Access 2020, 8, 120234–120254. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhang, H.; Dong, Y.; Wei, S. A SAR Dataset of Ship Detection for Deep Learning under Complex Backgrounds. Remote Sens. 2019, 11, 765. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, N.; Park, Y.W.; Won, C.S. Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset. J. Mar. Sci. Eng. 2022, 10, 377. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Chen, C.; Zeng, W.; Zhang, X. HFPNet: Super Feature Aggregation Pyramid Network for Maritime Remote Sensing Small-Object Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5973–5989. [Google Scholar] [CrossRef]
- Yin, X.; Lan, S.; Huang, W.; Ma, Y.; Wang, W.; Yang, H.; Zheng, Y. DLAHSD: Dynamic Label Adopted in Auxiliary Head for SAR Detection. In Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; pp. 3434–3438. [Google Scholar] [CrossRef]
- Yu, H.; Yang, S.; Zhou, S.; Sun, Y. VS-LSDet: A Multiscale Ship Detector for Spaceborne SAR Images Based on Visual Saliency and Lightweight CNN. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 1137–1154. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Yu, C.; Shin, Y. SAR Ship Detection Based on Improved YOLOv5 and BiFPN. ICT Express 2024, 10, 28–33. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Chen, F.; Shang, E.; Yao, W.; Zhang, S.; Yang, J. YOLOv7oSAR: A Lightweight High-Precision Ship Detection Model for SAR Images Based on the YOLOv7 Algorithm. Remote Sens. 2024, 16, 913. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Zhao, Y. YOLOv7-Sea: Object Detection of Maritime UAV Images Based on Improved YOLOv7. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 233–238. [Google Scholar]
Model | P/% | R/% | mAP50/% | FPS |
---|---|---|---|---|
Faster R-CNN | 89.3 | 86.4 | 90.2 | 17.9 |
YOLOv5 | 92.6 | 90.6 | 91.2 | 19.5 |
YOLOv7 | 91.1 | 85.0 | 91.0 | 16.8 |
YOLOv8 | 92.8 | 89.5 | 92.1 | 28.1 |
HFPNET | 95.2 | 96.1 | 92.8 | 36.5 |
DLAHSD | 93.6 | 92.8 | 94.3 | 40.2 |
VS-LSDet | 95.1 | 91.9 | 95.7 | 33.6 |
HCA-RFLA | 97.1 | 95.8 | 98.3 | 42.3 |
Model | P/% | R/% | mAP50/% | FPS |
---|---|---|---|---|
Faster R-CNN | 88.4 | 81.4 | 89.3 | 17.3 |
YOLOv5 | 92.1 | 90.2 | 92.4 | 18.4 |
YOLOv7 | 85.9 | 62.1 | 72.6 | 11.6 |
YOLOv8 | 91.8 | 84.3 | 92.8 | 23.5 |
HFPNET | 93.8 | 91.2 | 94.7 | 38.6 |
DLAHSD | 91.4 | 90.1 | 92.4 | 37.9 |
VS-LSDet | 92.6 | 89.4 | 93.1 | 32.1 |
HCA-RFLA | 96.2 | 93.8 | 97.2 | 39.0 |
Model | P/% | R/% | mAP50/% | FPS |
---|---|---|---|---|
Faster R-CNN | 81.5 | 82.4 | 85.3 | 19.1 |
YOLOv5 | 83.8 | 84.2 | 91.4 | 20.2 |
YOLOv7 | 79.7 | 69.3 | 82.7 | 19.6 |
YOLOv8 | 84.1 | 89.5 | 91.7 | 23.5 |
HFPNET | 92.8 | 86.4 | 92.7 | 30.7 |
DLAHSD | 91.9 | 88.6 | 92.4 | 32.6 |
VS-LSDet | 93.4 | 90.2 | 93.3 | 28.8 |
HCA-RFLA | 93.9 | 95.4 | 95.3 | 37.9 |
Model | HCA | RFLA | P/% | R/% | mAP50/% |
---|---|---|---|---|---|
YOLOv8 | × | × | 92.8 | 89.5 | 92.1 |
YOLOv8+HCA | ✔ | × | 94.5 | 90.6 | 95.9 |
YOLOv8+RFLA | × | ✔ | 93.2 | 92.1 | 94.2 |
HCA-RFLA | ✔ | ✔ | 97.1 | 95.8 | 98.9 |
Model | P/% | R/% | mAP50/% | mAP50–95/% |
---|---|---|---|---|
ECA | 92.1 | 83.3 | 91.6 | 66.6 |
Coordinate attention | 92.9 | 82.1 | 91.7 | 67.4 |
Bi-former attention | 93.3 | 85.4 | 93.8 | 67.2 |
SimAM | 92.5 | 84.1 | 93.9 | 66.9 |
HCA | 94.5 | 87.1 | 95.9 | 70.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, T.; Zhang, J.; Lv, W.; Xi, L.; Li, X. HCA-RFLA: A SAR Remote Sensing Ship Detection Based on Hierarchical Collaborative Attention Method and Gaussian Receptive Field-Driven Label Assignment Strategy. Electronics 2024, 13, 4470. https://doi.org/10.3390/electronics13224470
Xue T, Zhang J, Lv W, Xi L, Li X. HCA-RFLA: A SAR Remote Sensing Ship Detection Based on Hierarchical Collaborative Attention Method and Gaussian Receptive Field-Driven Label Assignment Strategy. Electronics. 2024; 13(22):4470. https://doi.org/10.3390/electronics13224470
Chicago/Turabian StyleXue, Tao, Jiayi Zhang, Wen Lv, Long Xi, and Xiang Li. 2024. "HCA-RFLA: A SAR Remote Sensing Ship Detection Based on Hierarchical Collaborative Attention Method and Gaussian Receptive Field-Driven Label Assignment Strategy" Electronics 13, no. 22: 4470. https://doi.org/10.3390/electronics13224470