Deep Neural Network Based Demand Side Short Term Load Forecasting †
Abstract
:1. Introduction
2. Methodology
2.1. Artificial Neural Networks
2.2. Deep Neural Networks
2.2.1. RBM Pre-Training
2.2.2. ReLU
3. Proposed Framework
3.1. Data Processing
3.2. Training and Forecasting
4. Implementation of DNNs
4.1. Size of Data
4.2. Structure of DNNs
4.3. Resolving Overfitting
5. Experimental Results with Case Studies
5.1. Case 1: Single Load Type
5.2. Case 2: Various Load Types
5.3. Case 3: Aggregated Load
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ipakchi, A.; Albuyeh, F. Grid of the future. IEEE Power Energy Mag. 2009, 7, 52–62. [Google Scholar] [CrossRef]
- Farhangi, H. The path of the smart grid. IEEE Power Energy Mag. 2010, 8, 18–28. [Google Scholar] [CrossRef]
- Feinberg, E.A.; Genethliou, D. Load forecasting. In Applied Mathematics for Restructured Electric Power Systems; Springer: Berlin, Germany, 2005; pp. 269–285. [Google Scholar]
- Albadi, M.H.; El-Saadany, E. A summary of demand response in electricity markets. Electr. Power Syst. Res. 2008, 78, 1989–1996. [Google Scholar] [CrossRef]
- Park, S.; Ryu, S.; Choi, Y.; Kim, J.; Kim, H. Data-driven baseline estimation of residential buildings for demand response. Energies 2015, 8, 10239–10259. [Google Scholar] [CrossRef]
- Hagan, M.T.; Behr, S.M. The time series approach to short term load forecasting. IEEE Trans. Power Syst. 1987, 2, 785–791. [Google Scholar] [CrossRef]
- Taylor, J.W. Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper. Res. Soc. 2003, 54, 799–805. [Google Scholar] [CrossRef]
- Taylor, J.W.; de Menezes, L.M.; McSharry, P.E. A comparison of univariate methods for forecasting electricity demand up to a day ahead. Int. J. Forecast. 2006, 22, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Park, D.C.; El-Sharkawi, M.; Marks, R.; Atlas, L.; Damborg, M. Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 1991, 6, 442–449. [Google Scholar] [CrossRef]
- Hernandez, L.; Baladrón, C.; Aguiar, J.M.; Carro, B.; Sanchez-Esguevillas, A.J.; Lloret, J. Short-term load forecasting for microgrids based on artificial neural networks. Energies 2013, 6, 1385–1408. [Google Scholar] [CrossRef]
- Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst. 2001, 16, 44–55. [Google Scholar] [CrossRef]
- Bakirtzis, A.G.; Petridis, V.; Kiartzis, S.; Alexiadis, M.C. A neural network short term load forecasting model for the Greek power system. IEEE Trans. Power Syst. 1996, 11, 858–863. [Google Scholar] [CrossRef]
- Lu, C.; Wu, H.T.; Vemuri, S. Neural network based short term load forecasting. IEEE Trans. Power Syst. 1993, 8, 336–342. [Google Scholar] [CrossRef]
- Rodrigues, F.; Cardeira, C.; Calado, J. The daily and hourly energy consumption and load forecasting using artificial neural network method: A case study using a set of 93 households in Portugal. Energy Procedia 2014, 62, 220–229. [Google Scholar] [CrossRef]
- Chen, H.; Cañizares, C.; Singh, A. ANN-based short-term load forecasting in electricity markets. In Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, Columbus, OH, USA, 28 January–1 February 2001; Volume 2, pp. 411–415.
- Papadakis, S.; Theocharis, J.; Kiartzis, S.; Bakirtzis, A. A novel approach to short-term load forecasting using fuzzy neural networks. IEEE Trans. Power Syst. 1998, 13, 480–492. [Google Scholar] [CrossRef]
- Bashir, Z.; El-Hawary, M. Applying wavelets to short-term load forecasting using PSO-based neural networks. IEEE Trans. Power Syst. 2009, 24, 20–27. [Google Scholar] [CrossRef]
- Kodogiannis, V.S.; Amina, M.; Petrounias, I. A clustering-based fuzzy wavelet neural network model for short-term load forecasting. Int. J. Neural Syst. 2013, 23. [Google Scholar] [CrossRef] [PubMed]
- Shayeghi, H.; Shayanfar, H.; Azimi, G. Intelligent neural network based STLF. Int. J. Comput. Syst. Sci. Eng. 2009, 4, 17–27. [Google Scholar]
- Fan, S.; Chen, L. Short-term load forecasting based on an adaptive hybrid method. IEEE Trans. Power Syst. 2006, 21, 392–401. [Google Scholar] [CrossRef]
- Park, S.; Ryu, S.; Choi, Y.; Kim, H. A framework for baseline load estimation in demand response: Data mining approach. In Proceedings of the 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), Venice, Italy, 3–6 November 2014; pp. 638–643.
- Dalto, M.; Matusko, J.; Vasak, M. Deep neural networks for ultra-short-term wind forecasting. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; pp. 1657–1663.
- He, W. Deep neural network based load forecast. Comput. Model. New Technol. 2014, 18, 258–262. [Google Scholar]
- Qiu, X.; Zhang, L.; Ren, Y.; Suganthan, P.N.; Amaratunga, G. Ensemble deep learning for regression and time series forecasting. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL), Orlando, FL, USA, 9–12 December 2014; pp. 21–26.
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Leshno, M.; Lin, V.Y.; Pinkus, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 1993, 6, 861–867. [Google Scholar] [CrossRef]
- Abu-Mostafa, Y.S.; Magdon-Ismail, M.; Lin, H.T. Learning from Data; AMLBook: Berlin, Germany, 2012. [Google Scholar]
- Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P.A.; Vincent, P.; Bengio, S. Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 2010, 11, 625–660. [Google Scholar]
- Hinton, G. A Practical Guide to Training Restricted Boltzmann Machines; Springer: Berlin, Germany, 2012; pp. 599–619. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the International Machine Learning Society, Atlanta, GA, USA, 16–21 June 2013; Volume 30, p. 1.
- Drees, M. Implementierung und Analyse von Tiefen Architekturen in R. Master’s Thesis, Fachhochschule Dortmund, Dortmund, Germany, 2013. [Google Scholar]
- Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the 2003 7th International Conference on Document Analysis and Recognition (ICDAR), Edinburgh, UK, 3–6 August 2003.
- Riedmiller, M.; Braun, H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proceedings of the 1993 IEEE International Conference On Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; pp. 586–591.
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Sevlian, R.; Rajagopal, R. Short term electricity load forecasting on varying levels of aggregation. Statistics 2014. [Google Scholar]
Parameter | Configuration | Number of Parameters |
---|---|---|
label, 24-h normalized load profile | 24 | |
past n normalized load profile | ||
date information of past n days (day of the week, weekday indicator) | ||
weather parameters correspond to label (temperature, humidity, wind speed, solar radiation, cloud cover) | 5 | |
date information of label (season, month, day of the week, weekday indicator) | 4 |
Season | MAPE (%) | RRMSE (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
RBM | ReLU | SNN | DSHW | ARIMA | RBM | ReLU | SNN | DSHW | ARIMA | |
Spring 1 | 2.66 | 3.77 | 3.44 | 2.01 | 9.45 | 3.18 | 4.24 | 4.30 | 2.54 | 13.8 |
Summer 2 | 2.88 | 3.36 | 4.20 | 4.50 | 5.86 | 4.12 | 4.68 | 5.92 | 7.93 | 7.16 |
Fall 3 | 3.49 | 3.84 | 6.01 | 5.04 | 13.43 | 4.52 | 5.00 | 8.48 | 7.34 | 26.55 |
Winter 4 | 3.76 | 2.82 | 3.78 | 3.04 | 11.16 | 4.58 | 3.50 | 4.72 | 4.06 | 15.36 |
Average | 3.20 | 3.45 | 4.36 | 3.65 | 9.97 | 4.10 | 4.36 | 5.86 | 5.47 | 15.61 |
Industry | User | Peak | MAPE (%) | RRMSE (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ID | Load (kW) | RBM | ReLU | SNN | DSHW | RBM | ReLU | SNN | DSHW | |
Public administration | 1 | 2784 | 12.53 | 12.82 | 11.93 | 15.82 | 15.68 | 15.94 | 14.98 | 21.90 |
2 | 6487 | 8.64 | 8.69 | 8.39 | 11.02 | 11.18 | 10.92 | 10.62 | 15.66 | |
3 | 2012 | 4.72 | 5.06 | 4.52 | 3.82 | 6.36 | 6.03 | 6.13 | 6.00 | |
4 | 3890 | 14.79 | 16.25 | 17.46 | 19.82 | 20.14 | 21.96 | 21.42 | 30.26 | |
5 | 8743 | 7.87 | 7.54 | 8.54 | 8.26 | 9.50 | 9.19 | 12.74 | 11.26 | |
Average | 9.71 | 10.07 | 10.17 | 11.75 | 12.57 | 12.81 | 13.18 | 17.02 | ||
Retail business | 6 | 3358 | 11.27 | 8.57 | 9.07 | 6.64 | 8.92 | 9.11 | 9.40 | 8.81 |
7 | 7646 | 10.52 | 10.12 | 12.26 | 9.84 | 14.56 | 13.95 | 21.13 | 16.74 | |
8 | 5194 | 9.12 | 8.87 | 13.50 | 12.24 | 11.10 | 10.73 | 17.15 | 25.46 | |
9 | 7268 | 10.26 | 11.36 | 16.99 | 12.88 | 12.37 | 13.29 | 16.29 | 22.23 | |
10 | 7214 | 6.45 | 7.47 | 8.14 | 7.82 | 9.74 | 10.19 | 10.54 | 14.35 | |
Average | 9.52 | 9.28 | 11.99 | 9.88 | 11.34 | 11.45 | 14.90 | 17.52 | ||
R&D services | 11 | 8845 | 3.53 | 3.32 | 4.48 | 3.43 | 4.90 | 4.21 | 6.23 | 4.83 |
12 | 2740 | 11.13 | 7.53 | 14.47 | 6.29 | 12.74 | 8.94 | 24.86 | 9.55 | |
13 | 8221 | 5.72 | 4.42 | 5.41 | 5.46 | 5.76 | 4.33 | 5.40 | 5.73 | |
14 | 1276 | 6.64 | 6.14 | 9.21 | 5.70 | 9.42 | 8.04 | 32.71 | 8.65 | |
15 | 891 | 10.03 | 9.38 | 10.31 | 9.80 | 12.71 | 13.56 | 14.76 | 16.21 | |
Average | 7.41 | 6.16 | 8.78 | 6.14 | 9.11 | 7.82 | 16.79 | 8.99 | ||
Networking business | 16 | 878 | 2.18 | 2.14 | 2.65 | 2.34 | 3.91 | 3.84 | 4.17 | 4.12 |
17 | 1481 | 2.51 | 2.04 | 5.72 | 2.10 | 3.37 | 2.76 | 8.12 | 3.65 | |
18 | 2667 | 2.76 | 3.20 | 4.61 | 3.42 | 3.72 | 4.19 | 6.43 | 5.50 | |
19 | 477 | 7.51 | 7.64 | 9.33 | 6.22 | 10.14 | 10.37 | 11.89 | 8.23 | |
20 | 10,022 | 1.78 | 1.38 | 6.88 | 0.68 | 2.331 | 1.95 | 15.81 | 1.05 | |
Average | 3.35 | 3.28 | 5.84 | 2.95 | 4.67 | 4.62 | 9.28 | 4.51 | ||
Healthcare | 21 | 2193 | 4.69 | 5.01 | 7.76 | 6.00 | 6.17 | 6.54 | 20.69 | 8.53 |
22 | 6937 | 3.60 | 3.82 | 4.54 | 5.01 | 4.97 | 5.21 | 5.97 | 6.67 | |
23 | 2603 | 3.81 | 5.45 | 5.70 | 6.16 | 5.18 | 6.44 | 8.80 | 9.05 | |
24 | 4110 | 3.21 | 2.95 | 4.40 | 3.76 | 4.36 | 3.66 | 7.09 | 5.33 | |
25 | 2932 | 5.48 | 6.34 | 6.24 | 7.82 | 7.32 | 7.96 | 7.56 | 11.37 | |
Average | 4.16 | 4.71 | 5.73 | 5.75 | 5.60 | 5.96 | 10.02 | 8.19 | ||
Vehicle and trailer manufacturing industry | 26 | 23,138 | 12.44 | 14.51 | 12.71 | 9.67 | 14.47 | 15.13 | 12.80 | 16.84 |
27 | 4132 | 14.09 | 17.58 | 20.10 | 18.40 | 12.81 | 12.66 | 14.15 | 24.55 | |
28 | 130,133 | 7.94 | 10.16 | 9.80 | 16.74 | 10.95 | 13.19 | 12.93 | 28.18 | |
29 | 38,674 | 14.65 | 12.86 | 15.52 | 16.74 | 17.35 | 15.32 | 18.78 | 27.35 | |
30 | 128,257 | 3.35 | 4.12 | 3.90 | 6.96 | 4.82 | 5.47 | 5.07 | 14.41 | |
Average | 10.49 | 11.85 | 12.41 | 13.70 | 12.08 | 12.35 | 12.75 | 22.27 | ||
Electronic component and computer manufacturing industry | 31 | 28,690 | 5.73 | 5.76 | 6.95 | 4.78 | 7.98 | 7.87 | 9.44 | 6.86 |
32 | 602 | 18.37 | 18.79 | 22.05 | 16.12 | 16.70 | 21.70 | 20.64 | 31.63 | |
33 | 112,630 | 2.72 | 1.19 | 2.17 | 1.11 | 3.32 | 1.90 | 2.88 | 1.91 | |
34 | 8607 | 3.33 | 1.84 | 2.76 | 1.54 | 3.88 | 2.24 | 4.75 | 2.07 | |
35 | 299,880 | 1.58 | 1.43 | 2.01 | 1.40 | 2.07 | 2.00 | 2.57 | 1.89 | |
Average | 6.35 | 5.80 | 7.19 | 4.99 | 6.79 | 7.14 | 8.06 | 8.87 | ||
Other manufacturing industries | 36 | 5721 | 12.89 | 13.81 | 15.50 | 19.10 | 13.52 | 14.41 | 16.36 | 26.17 |
37 | 832 | 33.14 | 33.65 | 45.21 | 40.73 | 24.43 | 25.25 | 29.11 | 53.15 | |
38 | 8202 | 21.48 | 21.15 | 24.01 | 25.94 | 28.34 | 30.76 | 31.54 | 44.55 | |
39 | 1164 | 15.60 | 16.19 | 16.31 | 12.00 | 31.79 | 32.38 | 31.93 | 20.61 | |
40 | 1948 | 15.58 | 13.51 | 13.95 | 15.79 | 16.07 | 14.13 | 14.20 | 20.23 | |
Average | 19.74 | 19.66 | 23.00 | 22.71 | 22.83 | 23.39 | 24.63 | 32.94 | ||
Total | 40 users | Average | 8.84 | 8.85 | 10.64 | 9.73 | 10.62 | 10.69 | 13.70 | 15.04 |
MAPE (%) | RRMSE (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
RBM | ReLU | SNN | DSHW | ARIMA | RBM | ReLU | SNN | DSHW | ARIMA | |
Average | 2.27 | 2.19 | 2.98 | 2.55 | 3.29 | 2.91 | 2.76 | 3.70 | 3.35 | 4.21 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, S.; Noh, J.; Kim, H. Deep Neural Network Based Demand Side Short Term Load Forecasting. Energies 2017, 10, 3. https://doi.org/10.3390/en10010003
Ryu S, Noh J, Kim H. Deep Neural Network Based Demand Side Short Term Load Forecasting. Energies. 2017; 10(1):3. https://doi.org/10.3390/en10010003
Chicago/Turabian StyleRyu, Seunghyoung, Jaekoo Noh, and Hongseok Kim. 2017. "Deep Neural Network Based Demand Side Short Term Load Forecasting" Energies 10, no. 1: 3. https://doi.org/10.3390/en10010003