A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems
Abstract
:1. Introduction
2. Renewable Resource Forecasting Techniques Overview
3. The Proposed CNN Model
3.1. Multilayer Perceptron
3.2. Convolution Neural Network
3.3. The Proposed Model
Algorithm 1. The algorithm of the proposed WindNet. | |
1: | Loading the data |
2: | Data normalization |
3: | Partition the data into training data and testing data |
4: | Model initialization |
5: | For all epochs |
6: | Shuffle the order of the training data |
7: | Partition the training data into batches |
8: | For all batches |
9: | Train the model on batch |
10: | End |
11: | End |
12: | Performance evaluation |
13: | Terminate |
3.4. Stochastic Optimization
Algorithm 2. The algorithm of Adam [32]. | |
1: | Require: α: Step size |
2: | Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates |
3: | Require: f(θ): Stochastic objective function with parameters θ |
4: | Require: θ0: Initial parameter vector |
5: | m0 ← 0 (Initialize 1st moment vector) |
6: | v0 ← 0 (Initialize 2nd moment vector) |
7: | t ← 0 (Initialize timestep) |
8: | whileθt not converged do |
9: | t ← t + 1 |
10: | Get gradients with respect to stochastic objective at timestep t |
11: | Update biased first moment estimate |
12: | Update biased second raw moment estimate |
13: | Compute bias-corrected first moment estimate |
14: | Compute bias-corrected second raw moment estimate |
15: | Update θt parameters |
16: | end while |
17: | Returnθt (Resulting parameters) |
18: | Terminate |
4. Experimental Results
4.1. Data Descriptions
4.2. Experiment Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soman, S.S.; Zareipour, H.; Malik, O.; Mandal, P. A review of wind power and wind speed forecasting methods with different time horizons. N. Am. Power Symp. 2010. [Google Scholar] [CrossRef]
- Georgilakis, P.S. Technical challenges associated with the integration of wind power into power systems. Renew. Sustain. Energy Rev. 2008, 12, 852–863. [Google Scholar] [CrossRef] [Green Version]
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ponta, L.; Raberto, M.; Teglio, A.; Cincotti, S. An Agent-based Stock-flow Consistent Model of the Sustainable Transition in the Energy Sector. Ecol. Econ. 2018, 145, 274–300. [Google Scholar] [CrossRef] [Green Version]
- Matson, P. The Sustainability Transition. Available online: https://issues.org/matson/ (accessed on 29 September 2018).
- Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 2014, 34, 243–254. [Google Scholar] [CrossRef]
- Kuo, P.-H.; Huang, C.-J. An Electricity Price Forecasting Model by Hybrid Structured Deep Neural Networks. Sustainability 2018, 10, 1280. [Google Scholar] [CrossRef]
- Cincotti, S.; Gallo, G.; Ponta, L.; Raberto, M. Modeling and forecasting of electricity spot-prices: Computational intelligence vs classical econometrics. AI Commun. 2014, 27, 301–314. [Google Scholar] [CrossRef]
- De Filippo, A.; Lombardi, M.; Milano, M. User-Aware Electricity Price Optimization for the Competitive Market. Energies 2017, 10, 1378. [Google Scholar] [CrossRef]
- Jung, J.; Broadwater, R.P. Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev. 2014, 31, 762–777. [Google Scholar] [CrossRef]
- Chang, T.P.; Liu, F.J.; Ko, H.H.; Huang, M.C. Oscillation characteristic study of wind speed, global solar radiation and air temperature using wavelet analysis. Appl. Energy 2017, 190, 650–657. [Google Scholar] [CrossRef]
- Pfeifer, S.; Schönfeldt, H.J. The response of saltation to wind speed fluctuations. Earth Surf. Process. Landf. 2012, 37, 1056–1064. [Google Scholar] [CrossRef]
- Chang, W.-Y. A Literature Review of Wind Forecasting Methods. J. Power Energy Eng. 2014, 2, 161–168. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, Z.; Kusiak, A. Very short-term wind speed forecasting with Bayesian structural break model. Renew. Energy 2013, 50, 637–647. [Google Scholar] [CrossRef]
- Bouzgou, H. A fast and accurate model for forecasting wind speed and solar radiation time series based on extreme learning machines and principal components analysis. J. Renew. Sustain. Energy 2014, 6. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Liu, F.; Hou, R. Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models. Renew. Sustain. Energy Rev. 2016, 60, 960–981. [Google Scholar] [CrossRef]
- Ren, Y.; Suganthan, P.N.; Srikanth, N. Ensemble methods for wind and solar power forecasting—A state-of-the-art review. Renew. Sustain. Energy Rev. 2015, 50, 82–91. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, Y.; Wang, J. Short-term wind speed forecasting using a hybrid model. Energy 2017, 119, 561–577. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Y.; Tan, Z.; Ke, W.; Tian, W. A Hybrid Method for Short-Term Wind Speed Forecasting. Sustainability 2017, 9, 596. [Google Scholar] [CrossRef]
- More, A.; Deo, M.C. Forecasting wind with neural networks. Mar. Struct. 2003, 16, 35–49. [Google Scholar] [CrossRef]
- Li, G.; Shi, J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87, 2313–2320. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, W.; Lu, H.; Wang, J. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew. Energy 2012, 37, 241–249. [Google Scholar] [CrossRef]
- Fathima, A.H.; Palanisamy, K. Energy Storage Systems for Energy Management of Renewables in Distributed Generation Systems. Energy Manag. Distrib. Gener. Syst. 2016. [Google Scholar] [CrossRef] [Green Version]
- El Moursi, M.S.; Al Hinai, A.; Ssekulima, E.B.; Anwar, M.B. Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: A review. IET Renew. Power Gener. 2016, 10, 885–989. [Google Scholar] [CrossRef]
- White, B.W.; Rosenblatt, F. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Am. J. Psychol. 1963, 76, 705. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 1–9. [Google Scholar] [CrossRef]
- Qiu, Z.; Chen, J.; Zhao, Y.; Zhu, S.; He, Y.; Zhang, C. Variety Identification of Single Rice Seed Using Hyperspectral Imaging Combined with Convolutional Neural Network. Appl. Sci. 2018, 8, 212. [Google Scholar] [CrossRef]
- Nam, S.; Park, H.; Seo, C.; Choi, D. Forged Signature Distinction Using Convolutional Neural Network for Feature Extraction. Appl. Sci. 2018, 8, 153. [Google Scholar] [CrossRef]
- Li, C.; Zhou, H. Enhancing the Efficiency of Massive Online Learning by Integrating Intelligent Analysis into MOOCs with an Application to Education of Sustainability. Sustainability 2018, 10, 468. [Google Scholar] [CrossRef]
- An, Q.; Pan, Z.; You, H. Ship Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network. Sensors 2018, 18, 334. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Network Traffic Classifier with Convolutional and Recurrent Neural Networks for Internet of Things. IEEE Access 2017, 5, 18042–18050. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. Comput. Sci. 2014, 1–13. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Niu, D.; Li, Y.; Dai, S.; Kang, H.; Xue, Z.; Jin, X.; Song, Y. Sustainability Evaluation of Power Grid Construction Projects Using Improved TOPSIS and Least Square Support Vector Machine with Modified Fly Optimization Algorithm. Sustainability 2018, 10, 231. [Google Scholar] [CrossRef]
- Das, M.; Akpinar, E. Investigation of Pear Drying Performance by Different Methods and Regression of Convective Heat Transfer Coefficient with Support Vector Machine. Appl. Sci. 2018, 8, 215. [Google Scholar] [CrossRef]
- Wang, S.; Hae, H.; Kim, J. Development of easily accessible electricity consumption model using open data and GA-SVR. Energies 2018, 11, 373. [Google Scholar] [CrossRef]
- Liu, J.P.; Li, C.L. The short-term power load forecasting based on sperm whale algorithm and wavelet least square support vector machine with DWT-IR for feature selection. Sustainability 2017, 9, 1188. [Google Scholar] [CrossRef]
- Wang, J.; Niu, T.; Wang, R. Research and application of an air quality early warning system based on a modified least squares support vector machine and a cloud model. Int. J. Environ. Res. Public Health 2017, 14, 249. [Google Scholar] [CrossRef] [PubMed]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar] [CrossRef]
- Ma, J.; Qiao, Y.; Hu, G.; Huang, Y.; Sangaiah, A.K.; Zhang, C.; Wang, Y.; Zhang, R. De-Anonymizing Social Networks with Random Forest Classifier. IEEE Access 2018, 6, 10139–10150. [Google Scholar] [CrossRef]
- Huang, N.; Lu, G.; Xu, D. A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies 2016, 9, 767. [Google Scholar] [CrossRef]
- Hassan, M.; Southworth, J. Analyzing Land Cover Change and Urban Growth Trajectories of the Mega-Urban Region of Dhaka Using Remotely Sensed Data and an Ensemble Classifier. Sustainability 2017, 10, 10. [Google Scholar] [CrossRef]
- Zhu, M.; Xia, J.; Jin, X.; Yan, M.; Cai, G.; Yan, J.; Ning, G. Class Weights Random Forest Algorithm for Processing Class Imbalanced Medical Data. IEEE Access 2018, 6, 4641–4652. [Google Scholar] [CrossRef]
- Quintana, D.; Sáez, Y.; Isasi, P. Random Forest Prediction of IPO Underpricing. Appl. Sci. 2017, 7, 636. [Google Scholar] [CrossRef]
- Safavian, S.R.; Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef]
- Rau, C.-S.; Wu, S.-C.; Chien, P.-C.; Kuo, P.-J.; Chen, Y.-C.; Hsieh, H.-Y.; Hsieh, C.-H.; Liu, H.-T. Identification of Pancreatic Injury in Patients with Elevated Amylase or Lipase Level Using a Decision Tree Classifier: A Cross-Sectional Retrospective Analysis in a Level I Trauma Center. Int. J. Environ. Res. Public Health 2018, 15, 277. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Peng, H.; Cai, G.; Chen, J. Power quality disturbances feature selection and recognition using optimal multi-resolution fast S-transform and CART algorithm. Energies 2016, 9, 927. [Google Scholar] [CrossRef]
- Rosli, N.; Rahman, M.; Balakrishnan, M.; Komeda, T.; Mazlan, S.; Zamzuri, H. Improved Gender Recognition during Stepping Activity for Rehab Application Using the Combinatorial Fusion Approach of EMG and HRV. Appl. Sci. 2017, 7, 348. [Google Scholar] [CrossRef]
- Alani, A.Y.; Osunmakinde, I.O. Short-term multiple forecasting of electric energy loads for sustainable demand planning in smart grids for smart homes. Sustainability 2017, 9, 1972. [Google Scholar] [CrossRef]
- Rau, C.-S.; Wu, S.-C.; Chien, P.-C.; Kuo, P.-J.; Chen, Y.-C.; Hsieh, H.-Y.; Hsieh, C.-H. Prediction of Mortality in Patients with Isolated Traumatic Subarachnoid Hemorrhage Using a Decision Tree Classifier: A Retrospective Analysis Based on a Trauma Registry System. Int. J. Environ. Res. Public Health 2017, 14, 1420. [Google Scholar] [CrossRef] [PubMed]
Test | SVM | RF | DT | MLP | WindNet |
---|---|---|---|---|---|
#1 | 1.009532 | 1.010812 | 1.067496 | 0.951965 | 0.906002 |
#2 | 0.804696 | 0.788575 | 0.91271 | 0.749479 | 0.726946 |
#3 | 0.995466 | 0.876718 | 1.059931 | 0.883512 | 0.919904 |
#4 | 0.824131 | 0.755548 | 0.839346 | 0.725489 | 0.735706 |
#5 | 0.991768 | 0.987 | 1.10225 | 1.00744 | 0.956887 |
#6 | 0.837221 | 0.769972 | 0.841412 | 0.845219 | 0.743931 |
#7 | 1.004376 | 0.869387 | 1.009339 | 0.877877 | 0.867812 |
#8 | 1.009328 | 0.825857 | 0.947832 | 0.832765 | 0.769551 |
#9 | 1.154096 | 0.762744 | 0.89834 | 0.800525 | 0.744625 |
#10 | 0.891498 | 0.694962 | 0.833799 | 0.742297 | 0.644439 |
#11 | 1.123073 | 0.81022 | 0.998746 | 0.751773 | 0.786698 |
Average | 0.967744 | 0.831981 | 0.955564 | 0.833486 | 0.800227 |
Test | SVM | RF | DT | MLP | WindNet |
---|---|---|---|---|---|
#1 | 1.212762 | 1.193097 | 1.280351 | 1.120047 | 1.084771 |
#2 | 0.983817 | 0.965371 | 1.128812 | 0.915917 | 0.910913 |
#3 | 1.227721 | 1.066804 | 1.310973 | 1.07933 | 1.136954 |
#4 | 1.016498 | 0.933692 | 1.048922 | 0.90495 | 0.923487 |
#5 | 1.296918 | 1.28096 | 1.41884 | 1.307386 | 1.252339 |
#6 | 1.051861 | 0.973836 | 1.068395 | 1.037206 | 0.944069 |
#7 | 1.226936 | 1.064154 | 1.267554 | 1.045251 | 1.059601 |
#8 | 1.276431 | 1.046167 | 1.2283 | 1.044998 | 0.985753 |
#9 | 1.373366 | 0.938822 | 1.143816 | 0.971037 | 0.922233 |
#10 | 1.104978 | 0.859121 | 1.065049 | 0.903742 | 0.811998 |
#11 | 1.416933 | 1.008177 | 1.279316 | 0.922009 | 0.967638 |
Average | 1.198929 | 1.030018 | 1.203666 | 1.022898 | 0.999978 |
Parameter | Setting |
---|---|
1D convolution filter number | 16 |
1D convolution kernel size | 9 |
1D convolution activation function | Rectified Linear Unit (ReLU) |
Dense layer activation function | Sigmoid |
Optimizer | Adaptive Moment Estimation (Adam) |
Learning rate | 0.0005 |
Learning rate decay | 0 |
Loss function | Mean Squared Error (MSE) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-J.; Kuo, P.-H. A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems. Energies 2018, 11, 2777. https://doi.org/10.3390/en11102777
Huang C-J, Kuo P-H. A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems. Energies. 2018; 11(10):2777. https://doi.org/10.3390/en11102777
Chicago/Turabian StyleHuang, Chiou-Jye, and Ping-Huan Kuo. 2018. "A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems" Energies 11, no. 10: 2777. https://doi.org/10.3390/en11102777