Electric Vehicle Inverter Electro-Thermal Models Oriented to Simulation Speed and Accuracy Multi-Objective Targets
Abstract
:1. Introduction
2. Semiconductor Modeling
- Conduction voltage drop
- Conduction power losses
- Switching power losses
- Thermal behavior (as described in Section 4)
2.1. Conduction Voltage Drop Variants
2.1.1. Ideal Output Voltage
2.1.2. Ron and Vth Dependent Voltage Drop
2.1.3. Tj Dependent Voltage Drop
2.1.4. Current Dependent Voltage Drop
2.1.5. Current and Tj Dependent Output Voltage
2.2. Conduction Losses
2.2.1. Ideal Conduction
2.2.2. Constant Ron and Vth Conduction Losses
2.2.3. Tj Dependent Conduction Losses
2.2.4. Current Dependent Conduction Losses
2.2.5. Current and Tj Dependent Conduction Losses
2.3. Switching Losses
2.3.1. Ideal Switching
2.3.2. Current Dependent Switching Losses
2.3.3. Voltage and Current Dependent Switching Losses
2.3.4. Tj and Current Dependent Switching Losses
2.3.5. Voltage, Tj and Current Dependent Switching Losses
2.3.6. Analytical Switching Losses
2.4. Blocking Behavior
3. Inverter Electrical Models
3.1. Hi-Fi Model
3.2. M-Fi Model
3.3. Lo-Fi Model
3.4. Fast Lo-Fi Model
3.5. Model Summary
4. Inverter Thermal Variants
4.1. Junction-to-Case Thermal Model
4.1.1. Individual n-Stage Thermal Model (12 × n RC)
4.1.2. Simplified Single Stage Thermal Model (12 × 1 RC)
4.1.3. Global Equivalent Inverter Thermal Model (1 × n RC)
4.2. Heatsink-to-Coolant Output Behavior (ΔTsa Calculation)
5. Analysis of the Inverter Model Accuracy
5.1. Comparison of Electrical Models
5.1.1. Conduction Losses Comparison
5.1.2. Switching Losses Comparison
5.1.3. Output Voltage Comparison
5.2. Thermal Model Comparison
5.2.1. Individual n-Stage Thermal Model (12 × n RC) vs. Simplified Single Stage Thermal Model (12 × 1 RC)
5.2.2. Individual n-Stage Thermal Model (12 × n RC) vs. Global Equivalent Inverter Thermal Model (1 × n RC)
5.3. Accuracy Analysis in Different Operating Conditions
6. Analysis of the Inverter Model Simulation Speed
6.1. Speed Analysis of the Electrical Models
6.2. Speed Analysis of the Thermal Models
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Newwire, P.R. Electric Vehicle Market—Global Forecast to 2025: Market is Dominated by Tesla, Nissan, BYD, BMW and Volkswagen; Global Market Insights, Inc.: Selbyville, DE, USA, 2018. [Google Scholar]
- McKerracher, C. EV Market Trends and Outlook; New Energy Financ.: London, UK, 2017. [Google Scholar]
- DiChristopher, T. Electric Vehicles will Grow from 3 million to 125 million by 2030: IEA Forecasts. 2018. Available online: https://www. cnbc. com/2018/05/30/electric-vehicles-will-grow-from-3-million-to-125-millionby-2030-iea. html (accessed on 26 September 2018).
- Zhou, Z.; Kanniche, M.S.; Butcup, S.G.; Igic, P. High-speed electro-thermal simulation model of inverter power modules for hybrid vehicles. IET Electr. Power Appl. 2011, 5, 636. [Google Scholar] [CrossRef]
- Bryant, A.; Roberts, G.; Walker, A.; Mawby, P.; Ueta, T.; Nisijima, T.; Hamada, K. Fast Inverter Loss and Temperature Simulation and Silicon Carbide Device Evaluation for Hybrid Electric Vehicle Drives. IEEJ Trans. Ind. Appl. 2008, 128, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Hifi-Elements|High Fidelity Electric Modelling and Testing. Available online: https://www.hifi-elements.eu/hifi/ (accessed on 20 September 2019).
- Inokuchi, S.; Saito, S.; Izuka, A.; Hata, Y.; Hatae, S.; Nakano, T.; Motto, E.R. A new high capacity compact power modules for high power EV/HEV inverters. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 468–471. [Google Scholar]
- Hussein, K.; Ishihara, M.; Miyamoto, N.; Nakata, Y.; Nakano, T.; Donlon, J.; Motto, E. New compact, high performance 7th Generation IGBT module with direct liquid cooling for EV/HEV inverters. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; Volume 2015, pp. 1343–1346. [Google Scholar]
- Murakami, Y.; Tajima, Y.; Tanimoto, S. Air-cooled full-SiC high power density inverter unit. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–4. [Google Scholar]
- Chakraborty, S.; Lan, Y.; Aizpuru, I.; Mazuela, M.; Alacano, A.; Hegazy, O. Scalable and Accurate Modelling of a WBG-based Bidirectional DC/DC Converter for Electric Drivetrains. In Proceedings of the 32nd Electric Vehicle Symposium (EVS32), Lyon, France, 19–22 May 2019; pp. 1–11. [Google Scholar]
- Rao, N.; Dinesh, C. Calculating Power Losses in an IGBT Module; Appllication Note AN6156-1; Dynex Semiconductor Ltd.: Lincoln, Lincolnshire, UK, 2014. [Google Scholar]
- Blinov, A.; Vinnikov, D.; Jalakas, T. Loss calculation methods of half-bridge square-wave inverters. Elektron. Elektrotechnika 2011, 7, 9–14. [Google Scholar] [CrossRef]
- Zhou, Z.; Khanniche, M.S.; Igic, P.; Kong, S.T.; Towers, M.; Mawby, P.A. A fast power loss calculation method for long real time thermal simulation of IGBT modules for a three-phase inverter system. Int. J. Numer. Model. Electron. Netw. Devices Fields 2006, 19, 33–46. [Google Scholar] [CrossRef]
- Ma, K.; Bahman, A.S.; Beczkowski, S.; Blaabjerg, F. Complete loss and thermal model of power semiconductors including device rating information. IEEE Trans. Power Electron. 2015, 30, 2556–2569. [Google Scholar] [CrossRef]
- Graovac, D.; Pürschel, M.; Kiep, A. MOSFET Power Losses Calculation Using the Datasheet Parameters. Infineon Appl. Note 2006, 1, 1–23. [Google Scholar]
- Yao, Y.; Lu, D.C.; Verstraete, D. Power loss modelling of MOSFET inverter for low-power permanent magnet synchronous motor drive. In Proceedings of the 2013 1st International Future Energy Electronics Conference (IFEEC), Tainan, Taiwan, 3–6 November 2013; pp. 849–854. [Google Scholar]
- Williams, B. Power Electronics: Devices, Drivers, Applications, and Passive Components, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 1992. [Google Scholar]
- Munk-Nielsen, S.; Tutelea, L.N.; Jaeger, U. Simulation with ideal switch models combined with measured loss data provides a good estimate of power loss. In Proceedings of the Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129), Rome, Italy, 8–12 October 2000; Volume 5, pp. 139–143. [Google Scholar]
- Chakraborty, S.; Sudhanshu, G.; Aizpuru, I.; Mazuela, M.; Klink, R.; Hegazy, O. High-Fidelity Liquid-cooling Thermal Modeling of a WBG-based Bidirectional DC-DC Converter for Electric Drivetrains. In Proceedings of the 21st European Conference on Power Electronics and Applications (EPE ’19 ECCE Europe), Genova, Italy, 2–6 September 2019; pp. 1–8. [Google Scholar]
- Witold, M.; Bartosz, R.; Zbigniew, S. Switching losses in three-phase voltage source inverters. Czas. Tech. 2015, 2015, 47–60. [Google Scholar]
- Pou, J.; Osorno, D.; Zaragoza, J.; Ceballos, S.; Jaen, C. Power losses calculation methodology to evaluate inverter efficiency in electrical vehicles. In Proceedings of the 2011 7th International Conference-Workshop Compatibility and Power Electronics (CPE), Tallinn, Estonia, 1–3 June 2011; pp. 404–409. [Google Scholar]
- Minambres-Marcos, V.; Guerrero-Martinez, M.A.; Romero-Cadaval, E.; Milanes-Montero, M.I. Generic Losses Model for Traditional Inverters and Neutral Point Clamped Inverters. Elektron. Elektrotechnika 2014, 20, 84–88. [Google Scholar] [CrossRef]
- Drofenik, U.; Kolar, J.W. A General Scheme for Calculating Switching- and Conduction-Losses of Power Semiconductors in Numerical Circuit SImulations of Power Electronic Systems. In Proceedings of the 2005 International Power Electronics Conference, IPEC-Niigata 2005, Niigata, Japan, 4–8 April 2005. [Google Scholar]
- Wu, B.; Narimani, M. High-Power Converters and AC Drives, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- März, M.; Nance, P. Thermal Modeling of Power Electronic Systems; Infineon Technol. AG Munich: Neubiberg, Germany, 2000; pp. 1–20. [Google Scholar]
- Fakhfakh, M.A.; Ayadi, M.; Neji, R. Thermal behavior of a three phase inverter for EV (Electric Vehicle). In Proceedings of the Melecon 2010—2010 15th IEEE Mediterranean Electrotechnical Conference, Valletta, Malta, 26–28 April 2010; pp. 1494–1498. [Google Scholar]
- Infineon Technologies. Transient Thermal Measurements and Thermal Equivalent Circuit Models; Application Note AN 2015-10; Infineon Technologies AG.: Neubiberg, Germany, 2018; pp. 1–13. [Google Scholar]
- Irwin, J.D.; Nelms, R.M. Basic Engineering Circuit Analysis, 10th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- SEMIKRON. Estimation of Liquid Cooled Heat Sink Performance at Different Operation Conditions; Appllication Note AN1501; Semikron: Nuremberg, Germany, 2015; pp. 1–12. [Google Scholar]
Main Characteristics | Hi-Fi | M-Fi | Lo-Fi | Fast Lo-Fi |
---|---|---|---|---|
Model type | High detail electric simulator. | Equation based simulator. | Equation based simulator. | Equation based simulator. |
Input signal | Pulsed signal. | Pulsed signal. | Low frequency signal. | Low frequency signal. |
Output signal | Switched (PWM) phase voltage. | Switched (PWM) phase voltage. | Low frequency phase voltage. | Averaged low frequency phase voltage. |
Time-step order | Faster than switching frequency. | Faster than switching frequency. | Same as the switching frequency. | Slower than switching frequency. |
Other Features | Accurate physics of semiconductors. Short-circuit simulation. | Accurate physics of semiconductors. Faster than Hi-Fi. No short-circuit. | No Semiconductor physics. Faster than M-Fi No short-circuit. | No Semiconductor physics. Even faster than Lo-Fi No short-circuit. |
Parameter | Value |
---|---|
Selected semiconductor: | Infineon FF600R07ME4_B11 |
Selected variant: | Full detailed model |
Switching frequency: | 5000 Hz |
Fundamental frequency: | 50 Hz |
Bus voltage: | 600 V |
Load: | Iph,rms,1 = 144 A, cos ϕ = 0.85 (lagging) |
Simulation step: | M-Fi: 1 × 10–5 s Lo-Fi: 2 × 10–4 s Fast Lo-Fi: 1 × 10–3 s |
Model | Step Time [s] | Accuracy Error (with Respect to Hi-Fi Model) [%] | ||||
---|---|---|---|---|---|---|
Total Power Losses | Semiconductor Power Losses | Semiconductor Junction Temperature | Voltage Fundamental Harmonic | DC-link Current | ||
Hi-Fi | 1 × 10−5 | - | - | - | - | - |
M-Fi | 1 × 10−5 | 2.03% | 0.81% | 0.75% | 0.02% | 0.55% |
Lo-Fi | 2 × 10−4 | 5.29% | 2.63% | 0.82% | 4.58% | 3.49% |
Fast Lo-Fi | 1× 10−3 | 6.49% | 1.50% | 0.45% | 4.76% | 33.24% |
Model | Average Conduction Losses [W] | Error with Respect to Hi-Fi Model [%] |
---|---|---|
Hi-Fi | 47.26 | - |
Lo-Fi | 49.49 | 4.7 |
Fast Lo-Fi | 43.98 | 6.9 |
Model | Average Switching Losses [W] | Error with Respect to Hi-Fi Model [%] |
---|---|---|
Hi-Fi | 78.20 | - |
Lo-Fi | 78.25 | 0.06 |
Fast Lo-Fi | 78.62 | 0.53 |
Model | Step Time [s] | Accuracy Error (with Respect to Hi-Fi Model) [%] | ||||
---|---|---|---|---|---|---|
Total Power Losses | Semiconductor Power Losses | Semiconductor Junction Temperature | Voltage Fundamental Harmonic | DC-Link Current | ||
Hi-Fi | 1 × 10−5 | - | - | - | - | - |
M-Fi | 1 × 10−5 | 6.94% | 2.72% | 2.44% | 0.07% | 0.08% |
Lo-Fi | 2 × 10−4 | 6.89% | 1.43% | 2.35% | 4.55% | 2.89% |
Fast Lo-Fi | 1× 10−3 | 6.27% | 6.18% | 2.11% | 4.47% | 8.95% |
Model | Simulated Time | Variant | Faster than real time? | |
---|---|---|---|---|
Hi-Fi | 2 s | Full detail | 449 | No |
2 s | Null detail | 154 | No | |
M-Fi | 50 s | Full detail | 3.44 | No |
50 s | Null detail | 2.26 | No | |
Lo-Fi | 500 s | Full detail | 0.16 | Yes |
500 s | Null detail | 0.10 | Yes | |
Fast Lo-Fi | 500 s | Full detail | 0.08 | Yes |
500 s | Null detail | 0.05 | Yes |
Model | Simulated Time | Variant | Faster than Real Time? | |
---|---|---|---|---|
Hi-Fi (Full detail) | 2 s | 12 × 5 RC | 449 | No |
2 s | 12 × 1 RC | 341 | No | |
2 s | 1 × 5 RC | 328 | No | |
M-Fi (Full detail) | 50 s | 12 × 5 RC | 3.44 | No |
50 s | 12 × 1 RC | 2.32 | No | |
50 s | 1 × 5 RC | 2.23 | No | |
Lo-Fi (Full detail) | 500 s | 12 × 5 RC | 0.16 | Yes |
500 s | 12 × 1 RC | 0.10 | Yes | |
500 s | 1 × 5 RC | 0.09 | Yes | |
Fast Lo-Fi (Full detail) | 500 s | 12 × 5 RC | 0.08 | Yes |
500 s | 12 × 1 RC | 0.03 | Yes | |
500 s | 1 × 5 RC | 0.03 | Yes |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urkizu, J.; Mazuela, M.; Alacano, A.; Aizpuru, I.; Chakraborty, S.; Hegazy, O.; Vetten, M.; Klink, R. Electric Vehicle Inverter Electro-Thermal Models Oriented to Simulation Speed and Accuracy Multi-Objective Targets. Energies 2019, 12, 3608. https://doi.org/10.3390/en12193608
Urkizu J, Mazuela M, Alacano A, Aizpuru I, Chakraborty S, Hegazy O, Vetten M, Klink R. Electric Vehicle Inverter Electro-Thermal Models Oriented to Simulation Speed and Accuracy Multi-Objective Targets. Energies. 2019; 12(19):3608. https://doi.org/10.3390/en12193608
Chicago/Turabian StyleUrkizu, June, Mikel Mazuela, Argiñe Alacano, Iosu Aizpuru, Sajib Chakraborty, Omar Hegazy, Marco Vetten, and Roberto Klink. 2019. "Electric Vehicle Inverter Electro-Thermal Models Oriented to Simulation Speed and Accuracy Multi-Objective Targets" Energies 12, no. 19: 3608. https://doi.org/10.3390/en12193608