Application of Genetic Algorithm for More Efficient Multi-Layer Thickness Optimization in Solar Cells
Abstract
:1. Introduction
2. Methodology
2.1. Brute Force
2.2. Genetic Algorithm
Algorithm 1: Genetic Algorithm |
Algorithm 2: Reproduction Algorithm |
2.2.1. Selection Methods
Random
Tournament
Roulette Wheel
Breeder
2.2.2. Crossover
Uniform
k-Point
2.2.3. Mutation
3. Complexity Analysis
4. Results and Discussion
4.1. Single Layer
4.1.1. ZnO Optical Spacer Layer
4.1.2. MoOx Optical Spacer Layer
4.2. Multi-Layer: ZnO + MoOx
4.3. Performance Comparison: Uniform vs. K-Point Crossover Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GA | Genetic Algorithm |
FDTD | Finite Difference Time Domain |
ZnO | Zinc Oxide |
MoOx | Molybdenum Oxide |
RWS | Roulette-Wheel Selection |
References
- Andreani, L.C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon solar cells: Toward the efficiency limits. Adv. Phys. X 2019, 4, 1548305. [Google Scholar] [CrossRef] [Green Version]
- Darwin, C. On the Origin of Species, 1859; Routledge: Abingdon, UK, 2004. [Google Scholar]
- Man, K.F.; Tang, K.S.; Kwong, S. Genetic algorithms: Concepts and applications [in engineering design]. IEEE Trans. Ind. Electron. 1996, 43, 519–534. [Google Scholar] [CrossRef]
- Jafar-Zanjani, S.; Inampudi, S.; Mosallaei, H. Adaptive Genetic Algorithm for Optical Metasurfaces Design. Sci. Rep. 2018, 8, 11040. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.M.; Fang, Y.C.; Lin, C.T. Application of genetic algorithm on optimization of laser beam shaping. Opt. Express 2015, 23, 15877–15887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conkey, D.B.; Brown, A.N.; Caravaca-Aguirre, A.M.; Piestun, R. Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 2012, 20, 4840–4849. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Q.; Monro, T.M. A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation. Opt. Express 2009, 17, 19311–19327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Yu, S.; Chen, W.; Sun, C. Highly Efficient Light-Trapping Structure Design Inspired By Natural Evolution. Sci. Rep. 2013, 3, 1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouvea, R.A.; Moreira, M.L.; Souza, J.A. Evolutionary design algorithm for optimal light trapping in solar cells. J. Appl. Phys. 2019, 125, 043105. [Google Scholar] [CrossRef]
- Kim, J.Y.; Vincent, P.; Jang, J.; Jang, M.S.; Choi, M.; Bae, J.H.; Lee, C.; Kim, H. Versatile use of ZnO interlayer in hybrid solar cells for self-powered near infra-red photo-detecting application. J. Alloy. Compd. 2020, 813, 152202. [Google Scholar] [CrossRef]
- Vincent, P.; Song, D.S.; Jung, J.H.; Kwon, J.H.; Kwon, H.B.; Kim, D.K.; Choe, E.; Kim, Y.R.; Kim, H.; Bae, J.H. Dependence of the hybrid solar cell efficiency on the thickness of ZnO nanoparticle optical spacer interlayer. Mol. Cryst. Liq. Cryst. 2017, 653, 254–259. [Google Scholar] [CrossRef]
- Vincent, P.; Shin, S.C.; Goo, J.S.; You, Y.J.; Cho, B.; Lee, S.; Lee, D.W.; Kwon, S.R.; Chung, K.B.; Lee, J.J.; et al. Indoor-type photovoltaics with organic solar cells through optimal design. Dyes Pigment. 2018, 159, 306–313. [Google Scholar] [CrossRef]
- Jouane, Y.; Colis, S.; Schmerber, G.; Kern, P.; Dinia, A.; Heiser, T.; Chapuis, Y.A. Room temperature ZnO growth by rf magnetron sputtering on top of photoactive P3HT: PCBM for organic solar cells. J. Mater. Chem. 2011, 21, 1953–1958. [Google Scholar] [CrossRef]
- Li, B.; Ren, H.; Yuan, H.; Karim, A.; Gong, X. Room-Temperature, Solution-Processed MoOx Thin Film as a Hole Extraction Layer to Substitute PEDOT/PSS in Polymer Solar Cells. ACS Photonics 2014, 1, 87–90. [Google Scholar] [CrossRef]
- Fang, Y.; Li, J. A review of tournament selection in genetic programming. In Proceedings of the International Symposium on Intelligence Computation and Applications, Wuhan, China, 22 October 2010; pp. 181–192. [Google Scholar]
- Jebari, K.; Madiafi, M. Selection methods for genetic algorithms. Int. J. Emerg. Sci. 2013, 3, 333–344. [Google Scholar]
- Mühlenbein, H.; Schlierkamp-Voosen, D. Predictive models for the breeder genetic algorithm i. continuous parameter optimization. Evol. Comput. 1993, 1, 25–49. [Google Scholar] [CrossRef]
Brute-Force Method: Number of Simulations = 81 | ||||
---|---|---|---|---|
Optimized ZnO Thickness = 30 nm | ||||
Selection Method | ||||
Parameter | Random | Roulette | Tournament | Breeder |
Population | 20 | 80 | 70 | 60 |
Generation | 40 | 10 | 30 | 10 |
Mutation prob (%) | 80 | 15 | 60 | 75 |
Mean (simulations) | 78.42 ± 1.82 | 80.47 ± 0.50 | 78.16 ± 1.65 | 79.17 ± 1.37 |
Brute-Force Method: Number of Simulations = 31 | ||||
---|---|---|---|---|
Optimized MoOx Thickness = 8 nm | ||||
Selection Method | ||||
Parameter | Random | Roulette | Tournament | Breeder |
Population | 15 | 5 | 15 | 15 |
Generation | 20 | 100 | 30 | 80 |
Mutation prob (%) | 80 | 75 | 75 | 80 |
Mean (simulations) | 30.91 ± 0.31 | 13.05 ± 3.24 | 30.97 ± 0.16 | 30.97 ± 0.18 |
Brute-Force Method: Number of Simulations = 2511 | ||||
---|---|---|---|---|
Optimized ZnO Thickness = 24 nm, Optimized MoOx Thickness = 8 nm | ||||
Selection Method | ||||
Parameter | Random | Roulette | Tournament | Breeder |
Population | 500 | 1000 | 500 | 500 |
Generation | 90 | 90 | 80 | 90 |
Mutation prob (%) | 10 | 90 | 20 | 50 |
Mean (simulations) | 2391.34 ± 38.13 | 1758.77 ± 39.75 | 2428.84 ± 34.57 | 2256.80 ± 70.15 |
Average Number of Simulations | |||||
---|---|---|---|---|---|
Crossover Methods | |||||
Layers | Uniform | 1-point | 2-point | 4-point | Bits |
MoOx | 13.05 ± 3.24 | 17.83 ± 2.54 | 20.89 ± 2.84 | 14.73 ± 3.06 | 5 |
MoOx | 13.05 ± 3.24 | 13.83 ± 1.69 | 19.88 ± 3.74 | 20.99 ± 3.72 | 8 |
MoOx | 13.05 ± 3.24 | - * | 12.14 ± 1.26 | 19.05 ± 2.13 | 12 |
ZnO | 80.47 ± 0.50 | 70.76 ± 0.84 | 75.72 ± 1.44 | 74.00 ± 1.96 | 8 |
ZnO | 80.47 ± 0.50 | 74.04 ± 1.58 | 76.37 ± 1.56 | 73.90 ± 1.51 | 12 |
ZnO-MoOx | 1758.77 ± 39.75 | 1701.78 ± 15.34 | 1140.06 ± 37.11 | 1355.23 ± 68.35 | 12 |
Average Number | Crossover | Initialization Parameters | ||||
---|---|---|---|---|---|---|
Layers | of Simulations | Method | Bits | Population | Generation Count | Mutation Rate |
MoOx | 12.14 ± 1.26 | 2-point | 12 | 10 | 30 | 10 |
ZnO | 70.76 ± 0.84 | 1-point | 8 | 70 | 10 | 15 |
MoOx + ZnO | 1140.06 ± 37.11 | 2-point | 12 | 500 | 70 | 70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincent, P.; Cunha Sergio, G.; Jang, J.; Kang, I.M.; Park, J.; Kim, H.; Lee, M.; Bae, J.-H. Application of Genetic Algorithm for More Efficient Multi-Layer Thickness Optimization in Solar Cells. Energies 2020, 13, 1726. https://doi.org/10.3390/en13071726
Vincent P, Cunha Sergio G, Jang J, Kang IM, Park J, Kim H, Lee M, Bae J-H. Application of Genetic Algorithm for More Efficient Multi-Layer Thickness Optimization in Solar Cells. Energies. 2020; 13(7):1726. https://doi.org/10.3390/en13071726
Chicago/Turabian StyleVincent, Premkumar, Gwenaelle Cunha Sergio, Jaewon Jang, In Man Kang, Jaehoon Park, Hyeok Kim, Minho Lee, and Jin-Hyuk Bae. 2020. "Application of Genetic Algorithm for More Efficient Multi-Layer Thickness Optimization in Solar Cells" Energies 13, no. 7: 1726. https://doi.org/10.3390/en13071726