Commercial Biogas Plants: Lessons for Ukraine
Abstract
:1. Introduction
2. Literature Review
- Trends, subsidies, consumption, and cost evaluation in Italy [23];
- An assessment of biogas market potential in the USA [24];
- Prospect of biogas transportation grid in the Netherlands [25];
- Support schemes for biogas in the European Union [26];
- Development and perspectives of biogas in the European Union [27];
- Biogas innovation systems in Brazil [28];
- Lesson from Denmark, Germany, and Italy in biogas and biomethane production [29];
- Sustainability of biogas production in Finland [30];
3. Materials and Methods
4. Results
4.1. Global Renewable Energy Status
4.2. Current Biogas Production and Utilization Status in the European Union
4.3. Economical Indicator: Specific Investment Costs
4.4. Electricity Production Costs
4.5. Biomethane as Vehicle Fuel
4.6. Heat Sale
4.7. Combined Utilization of Biomethane and Carbon Dioxide
4.8. Support Schemes in European Union Countries
4.9. Support Schemes in Ukraine
4.10. Principle Recommendations
- Biogas production needs to be based on agricultural residues, animal manure, and organic waste from processing mills.
- Transport distances for feedstock transportation should be minimized.
- Cogeneration and subsequent use of engine waste heat are preferable to electricity generation alone. The use of heat recovery can contribute to the bioeconomy, such as from greenhouses, beer brewing, and ethanol production.
- Digestate management is a point of great importance. Digestate needs to be used as fertilizer. Digestate can be used as fertilizer without any treatment after it is unloaded from the digester. However, if it needs to be stored or transported, processing of digestate to reduce its volume becomes relevant. This should be taken into account when a biogas plant is developed.
- Biogas contains carbon dioxide. This gas may be used as a chemical source and as a commodity, which will improve economic indicators of biogas systems.
- Anaerobic digesters can be integrated into processing plants, such as sugar, beer, and ethanol plants. This option may be a solution to the problem of substrate supply and the use of energy converted from biogas.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Renewable Energy Network of the 21st Century. Renewables 2019 Global Status Report. 2019. Available online: https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf (accessed on 11 May 2020).
- Ahammad, S.Z.; Sreekrishnan, T.R. Biogas: An Evolutionary Perspective in the Indian Context. In Green Fuels Technology; Soccol, C.R., Brar, S.K., Faulds, C., Pereira Ramos, L., Eds.; Springer: Cham, Switzerland, 2016; pp. 431–443. ISBN 978-3-319-30203-4. [Google Scholar] [CrossRef]
- Ahmad Dar, R.; Ahmad Dar, E.; Kaur, A.; Gupta Phutela, U. Sweet sorghum-a promising alternative feedstock for biofuel production. Renew. Sustain. Energy Rev. 2018, 82, 4070–4090. [Google Scholar] [CrossRef]
- Wu, Q.; Qiang, T.C.; Zeng, G.; Zhang, H.; Huang, Y.; Wang, Y. Sustainable and renewable energy from biomass wastes in palm oil industry: A case study in Malaysia. Int. J. Hydrogen Energy 2017, 42, 23871–23877. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Liu, R.; Sun, C. A review of methane production from agricultural residues in China. Renew. Sustain. Energy Rev. 2016, 54, 857–865. [Google Scholar] [CrossRef]
- Biosantech, T.A.S.; Rutz, D.; Janssen, R.; Drosg, B. Biomass resources for biogas production. In The Biogas Handbook; Wellinger, A., Murphy, J., Baxter, D., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 19–51. ISBN 978-0-85709-498-8. [Google Scholar] [CrossRef]
- Lebuhn, M.; Munk, B.; Effenberger, M. Agricultural biogas production in Germany—From practice to microbiology basics. Energy Sustain. Soc. 2014, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Li, Z.; Mang, H.-P.; Huba, E.-M.; Gao, R.; Wang, X. Development and application of prefabricated biogas digesters in developing countries. Renew. Sustain. Energy Rev. 2014, 34, 387–400. [Google Scholar] [CrossRef]
- Roubík, H.; Mazancová, J.; Le Dinh, P.; Dinh Van, D.; Banout, J. Biogas quality across small-scale biogas plants: A case of central Vietnam. Energies 2018, 11, 1794. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, K.; Aslanzadeh, S.; Taherzadeh, M.J. Household biogas digesters—A review. Energies 2012, 5, 2911–2942. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Panagiotis, K. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.; Ahlgren, E.O.; Shukla, P.R. Barriers to biogas dissemination in India: A review. Energy Policy 2018, 112, 361–370. [Google Scholar] [CrossRef]
- Jiang, X.; Sommer, S.G.; Christensen, K.V. A review of the biogas industry in China. Energy Policy 2011, 39, 6073–6081. [Google Scholar] [CrossRef]
- Shindina, T.; Streimikis, J.; Sukhareva, Y.; Nawrot, Ł. Social and Economic Properties of the Energy Markets. Econom. Sociol. 2018, 11, 334–344. [Google Scholar] [CrossRef]
- Stavytskyy, A.; Kharlamova, G.; Giedraitis, V.; Šumskis, V. Estimating the interrelation between energy security and macroeconomic factors in European countries. J. Int. Studies 2018, 11, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Kalinichenko, A.; Havrysh, V. Environmentally Friendly Fuel Usage: Economic Margin of Feasibility. Ecol. Chem. Eng. S 2019, 26, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Kopishynska, O.; Utkin, Y.; Kalinichenko, A.; Jelonek, D. Efficacy of the cloud computing technology in the management of communication and business processes of the companies. Pol. J. Man. Stud. 2016, 14, 104–114. [Google Scholar] [CrossRef]
- Guimarães, C.; Maia, D.; Serra, E. Construction of biodigesters to optimize the production of biogas from anaerobic co-digestion of food waste and sewage. Energies 2018, 11, 870. [Google Scholar] [CrossRef] [Green Version]
- Mor, S.; Ravindra, K.; Dahiya, R.P.; Chandra, A. Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ. Monit. Assess. 2006, 118, 435–456. [Google Scholar] [CrossRef] [PubMed]
- Mantis, I.; Voutsa, D.; Samara, C. Assessment of the environmental hazard from municipal and industrial wastewater treatment sludge by employing chemical and biological methods. Ecotoxicol. Environ. Saf. 2005, 62, 397–407. [Google Scholar] [CrossRef]
- Tatsi, A.A.; Zouboulis, A.I. A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv. Environ. Res. 2002, 6, 207–219. [Google Scholar] [CrossRef]
- Mugodo, K.; Magama, P.P.; Dhavu, K. Biogas production potential from agricultural and agro-processing waste in South Africa. Waste Biomass Valoriz. 2017, 8, 2383–2392. [Google Scholar] [CrossRef]
- Benato, A.; Macor, A. Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions. Energies 2019, 12, 979. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.; Galik, C.S.; Vegh, T. Biogas in the United States: An Assessment of Market. Potential in a Carbon-Constrained Future; Report NI R 14-02; Nicholas Institute for Environmental Policy Solutions: Durham, NC, USA, February 2014; Available online: https://nicholasinstitute.duke.edu/sites/default/files/publications/ni_r_14-02_full_pdf.pdf (accessed on 29 December 2019).
- Hengeveld, E.J.; Bekkering, J.; van Gemert, W.J.T.; Broekhuis, A.A. Biogas infrastructures from farm to regional scale, prospects of biogas transport grids. Biomass Bioenergy 2016, 86, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Banja, M.; Jegard, M.; Motola, V.; Sikkema, R. Support for biogas in the EU electricity sector—A comparative analysis. Biomass Bioenergy 2019, 128, 105313. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- De Oliveira, L.G.S.; Negro, S.O. Contextual structures and interaction dynamics in the Brazilian Biogas Innovation System. Renew. Sustain. Energy Rev. 2019, 107, 462–481. [Google Scholar] [CrossRef]
- Eyl-Mazzega, M.-A.; Mathieu, C. Biogas and Biomethane in Europe: Lessons from Denmark, Germany and Italy; Etudes de l’Ifri, Ifri: Paris, France, April 2019; Available online: https://www.ifri.org/sites/default/files/atoms/files/mathieu_eyl-mazzega_biomethane_2019.pdf (accessed on 29 December 2019).
- Winquist, E.; Rikkonen, P.; Pyysiäinen, J.; Varho, V. Is biogas an energy or a sustainability product?—Business opportunities in the Finnish biogas branch. J. Clean. Prod. 2019, 233, 1344–1354. [Google Scholar] [CrossRef]
- Bundgaard, S.S.; Kofoed-Wiuff, A.; Herrmann, I.T.; Karlsson, K.B. Experiences with Biogas in Denmark. DTU Management Engineering. 2014. Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/97911958/Experiences_with_biogas_in_Denmark.pdf (accessed on 29 December 2019).
- Gu, L.; Zhang, Y.X.; Wang, J.Z.; Chen, G.; Battye, H. Where is the future of China’s biogas? Review, forecast, and policy implications. Pet. Sci. 2016, 13, 604–624. [Google Scholar] [CrossRef] [Green Version]
- Igliński, B.; Buczkowski, R.; Cichosz, M. Biogas production in Poland—Current state, potential and perspectives. Renew. Sustain. Energy Rev. 2015, 50, 686–695. [Google Scholar] [CrossRef]
- Trends and Developments in the Renewable Energy Sector in Ukraine; Saxion University of Applied Sciences: Enschede, The Netherlands, 2018; Available online: https://www.agroberichtenbuitenland.nl/binaries/agroberichtenbuitenland/documenten/publicaties/2018/09/21/trends-in-biomass/2018+trends+in+renewable+sector+eng.pdf (accessed on 11 April 2020).
- Atamanyuk, I.P.; Kondratenko, Y.P.; Sirenko, N.N. Forecasting Economic Indices of Agricultural Enterprises Based on Vector Polynomial Canonical Expansion of Random Sequences. In Proceedings of the 12-th International Conference ICTERI’2016, CEUR-WS, Kyiv, Ukraine, 21–24 June 2016; 1614, pp. 458–468. Available online: http://ceur-ws.org/Vol-1614/paper_91.pdf (accessed on 21 March 2020).
- Trypolska, H.; Diachuk, O.; Podolets, R.; Chepeliev, M. Biogas projects in Ukraine: prospects, consequences and regulatory policy. Econ. Forecast. 2018, 2, 111–134. [Google Scholar] [CrossRef]
- Hnatyshyn, M. Decomposition analysis of the impact of economic growth on ammonia and nitrogen oxides emissions in the European Union. J. Int. Stud. 2018, 11, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Simionescu, M.; Bilan, Y.; Gędek, S.; Streimikiene, D. The Effects of Greenhouse Gas Emissions on Cereal Production in the European Union. Sustainability 2019, 11, 3433. [Google Scholar] [CrossRef] [Green Version]
- Muzychak, A.; Vlasenko, M. Prospects for Biogas—Leaders’ Experience Helps Ukraine. In Proceedings of the International Youth Science Forum “Litteris Et Artibus”, Lviv, Ukraine, 24–26 November 2016; pp. 179–180. Available online: http://ena.lp.edu.ua/bitstream/ntb/40738/1/LEA-2016-179-180.pdf (accessed on 29 December 2019).
- Goncharuk, A.G.; Havrysh, V.; Nitsenko, V. National features for alternative motor fuels market. Int. J. Energy Technol. Policy 2018, 14, 226–249. [Google Scholar] [CrossRef]
- Bilan, Y.; Nitsenko, V.; Havrysh, V. Energy aspect of vertical integration in agriculture. Rynek Energii 2017, 5, 98–110. Available online: http://rynek-energii.pl/pl/RE132 (accessed on 29 December 2019).
- Plotnitska, S.I.; Arutiunian, R.R.; Berezhna, Y.H.; Bogomolova, K.S. Formation and efficient development of biogas production in the agricultural sector. Financ. Credit Act Probl. Theory Pract. 2019, 1, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Pryshliak, N. Biogas production in individual biogas digesters: Experience of India and prospects for Ukraine. Agric. Res. Econ. 2019, 5, 122–136. Available online: https://www.are-journal.com/are/article/view/226 (accessed on 29 December 2019).
- Parawira, W. Biogas technology in sub-Saharan Africa: Status, prospects and constraints. Rev. Environ. Sci. Biotechnol. 2009, 8, 187–200. [Google Scholar] [CrossRef]
- Kalinichenko, A.; Havrysh, V. Feasibility study of biogas project development: Technology maturity, feedstock, and utilization pathway. Arch. Env. Protect. 2019, 45, 68–83. [Google Scholar]
- Jiang, Y.; Havrysh, V.; Klymchuk, O.; Nitsenko, V.; Balezentis, T.; Streimikiene, D. Utilization of Crop Residue for Power Generation: The Case of Ukraine. Sustainability 2019, 11, 7004. [Google Scholar] [CrossRef] [Green Version]
- Lyeonov, S.; Pimonenko, T.; Bilan, Y.; Štreimikienė, D.; Mentel, G. Assessment of Green Investments’ Impact on Sustainable Development: Linking Gross Domestic Product Per Capita, Greenhouse Gas Emissions and Renewable Energy. Energies 2019, 12, 3891. [Google Scholar] [CrossRef] [Green Version]
- Tvaronavičienė, M.; Prakapienė, D.; Garškaitė-Milvydienė, K.; Prakapas, R.; Nawrot, Ł. Energy Efficiency in the Long-Run in the Selected European Countries. Econ. Sociol. 2018, 11, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Havrysh, V.; Kalinichenko, A.; Minkova, O.; Lyashenko, S. Agricultural feedstock for solid and liquid biofuel production in Ukraine: cluster analysis. Proceedings of Environmental Science, Engineering and Management, Environmental Innovations: Advances in Engineering, Technology and Management, EIAETM, Poltava, Ukraine, 23–27 September 2019; 6, pp. 649–658. Available online: http://procedia-esem.eu/pdf/issues/2019/no4/73_Havrysh_19.pdf (accessed on 3 March 2020).
- Kalinichenko, A.; Havrysh, V.; Hruban, V. Heat Recovery Systems for Agricultural Vehicles: Utilization Ways and Their Efficiency. Agric. Basel 2018, 8, 199. [Google Scholar] [CrossRef]
- Simionescu, M.; Albu, L.L.; Raileanu Szeles, M.; Bilan, Y. The impact of biofuels utilisation in transport on the sustainable development in the European Union. Technol. Econ. Dev. Econ. 2017, 23, 667–686. [Google Scholar] [CrossRef]
- IRENA. Renewable Energy Statistics; International Renewable Energy Agency: Abu Dhabi, UAE, 2019; ISBN 978-92-9260-137-9. Available online: https://www.irena.org/publications/2019/Jul/Renewable-energy-statistics-2019 (accessed on 11 April 2020).
- IRENA. Biogas for Road Vehicles: Technology Brief; International Renewable Energy Agency: Abu Dhabi, UAE, 2018; Available online: https://www.irena.org/publications/2017/Mar/Biogas-for-road-vehicles-Technology-brief (accessed on 11 April 2020).
- Power from Waste—the World’s Biggest Biomass Power Plants. Power Technology. Available online: https://www.power-technology.com/features/featurepower-from-waste-the-worlds-biggest-biomass-power-plants-4205990/ (accessed on 11 April 2020).
- Vaskiluoto—The world’s Largest Biomass Gasifier Exceeds Expectations. Valmet. Available online: https://www.valmet.com/media/articles/all-articles/vaskiluoto---the-worlds-largest-biomass-gasifier-exceeds-expectations/ (accessed on 11 April 2020).
- Top 10 Biggest Wind Farms. Power Technology. Available online: https://www.power-technology.com/features/feature-biggest-wind-farms-in-the-world-texas/ (accessed on 11 April 2020).
- 5 Largest Solar Farms in the World. Origin. Available online: https://www.originenergy.com.au/blog/5-largest-solar-farms-in-the-world/ (accessed on 11 April 2020).
- Ortega, S.C. The Largest Waste Water Treatment Plant in the World. Available online: http://www.dimasagrupo.com/wp-content/uploads/2016/06/Biogas-Directory-Vol04M-Reportaje-Atotonilco.pdf (accessed on 10 May 2020).
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Mintz, M.M.; Snyder, S.W. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renew. Sustain. Energy Rev. 2015, 50, 346–362. [Google Scholar] [CrossRef] [Green Version]
- New Jenbachers Make Ottersberg Plant. Largest Biogas Complex. In Germany. Available online: https://dieselgasturbine.com/new-jenbachers-make-ottersberg-plant-largest-biogas-complex-in-germany/ (accessed on 11 April 2020).
- Brazil’s Sao Paulo Inaugurates 29.5-MW Biogas Plant. Available online: https://renewablesnow.com/news/brazils-sao-paulo-inaugurates-295-mw-biogas-plant-540185/ (accessed on 11 April 2020).
- First Phase of Ukraine’s Largest Biogas Complex Put into Operation. Available online: https://latifundist.com/en/novosti/47871-v-ukraine-zapustili-pervuyu-ochered-krupnejshego-biogazovogo-kompleksa (accessed on 11 April 2020).
- World’s Largest Biogas Plant Started Running at Full Capacity in Ukraine. Available online: https://latifundist.com/en/novosti/46049-v-ukraine-na-polnuyu-moshchnost-zarabotala-krupnejshaya-v-mire-biogazovaya-stantsiya (accessed on 11 April 2020).
- Balussou, D. An analysis of current and future electricity production from biogas in Germany. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2018. [Google Scholar] [CrossRef]
- The State of Renewable Energies in Europe. Edition 2019. 19th EurObserv’ER Report. Available online: https://www.eurobserv-er.org/ (accessed on 11 April 2020).
- Biogas Technologies in Lithuania. Available online: http://www.lei.lt/Opet/Renewable/biogas (accessed on 11 April 2020).
- New VERBIO Plant for the Production of Biomethane from 100 Percent Straw Commissioned as Scheduled. Available online: https://www.verbio.de/en/press/news/press-releases/new-verbio-plant-for-the-production-of-biomethane-from-100-percent-straw/ (accessed on 11 April 2020).
- BioEnergy Farm. Implementation Plan for BioEnergy Farm. IEE Contract No. IEE/09/637 S12.558213. D 4.1: Description of Best Examples. Available online: https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/bioenergy_farm_description_of_best_case_examples_en.pdf (accessed on 3 March 2020).
- Field Crops and Gassland. Statistisches Bundesamt. Available online: https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Agriculture-Forestry-Fisheries/Field-Crops-Grassland/_node.html (accessed on 5 March 2020).
- Short-Term Outlook for EU Agricultural Markets in 2019 and 2020. Summer 2019. Edition #24. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/short-term-outlook-autumn-2019_en.pdf (accessed on 5 March 2020).
- Crop. Production of Ukraine. Statistical Yearbook. 2018. Available online: http://www.ukrstat.gov.ua/druk/publicat/kat_u/2019/zb/04/zb_rosl_2018.pdf (accessed on 5 March 2020).
- Biogas-Messprogramm II, 61 Biogasanlagen im Vergleich. Available online: https://www.infothek-biomasse.ch/images/178_2009_FNR_Biogasanlagen_im_Vergleich.pdf (accessed on 3 January 2020).
- Savchuk, S. Ukraine: Energy Efficiency and Renewable Energy. Available online: https://saee.gov.ua/sites/default/files/documents/SAEE_Invest_potential_EE_RE_29_05_2018.pdf (accessed on 3 January 2020).
- IRENA (2019), Renewable Power Generation Costs in 2018, International Renewable Energy Agency, Abu Dhabi. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf (accessed on 3 January 2020).
- Logan, J.; Marcy, C.; McCall, J.; Flores-Espino, F.; Bloom, A.; Aabakken, J.; Cole, W.; Jenkin, T.; Porro, G.; Liu, C. Electricity Generation Baseline Report, NREL. January 2017. Available online: https://www.nrel.gov/docs/fy17osti/67645.pdf (accessed on 3 January 2020).
- Chludziński, D.; Duda, M. Technological solutions applied in biogas plants—A case study. E3S Web Conf. 2018, 49, 00012. [Google Scholar] [CrossRef]
- Balussou, D.; Kleyböcker, A.; McKenna, R.; Möst, D.; Fichtner, W. An economic analysis of three operational co-digestion biogas plants in Germany. Waste Biomass Valoris 2011, 3, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Koch, M. Ökologische und Ökonomische Bewertung von Co-Vergärungsanlagen und Deren Standortwahl; Universität Karlsruhe: Karlsruhe, Germany, 2009; Available online: https://publikationen.bibliothek.kit.edu/1000010806/809783 (accessed on 10 January 2020).
- König, A. Ganzheitliche Analyse und Bewertung konkurrierender energetischer Nut-zungspfade für Biomasse im Energiesystem Deutschland bis zum Jahr 2030. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2009. [Google Scholar] [CrossRef]
- Deutsches Biomasseforschungszentrum (DBFZ). Vorbereitung und Begleitung der Erstellung des Erfahrungsberichts 2014 gemäß §65 EEG, Vorhaben IIa Stromerzeugung aus Biomasse; Wissenschaftlicher Bericht: Leipzig, Germany, July 2014; p. 50. Available online: https://www.dbfz.de/fileadmin/eeg_monitoring/berichte/02_Erfahrungsbericht_Juli_2015.pdf (accessed on 3 January 2020).
- Zeddies, J.; Bahrs, E.; Schönleber, N.; Gamer, W.; Empl, J.-B. Optimierung der Biomas-senutzung nach Effizienz in Bereitstellung und Verwendung unter Berücksichtigung von Nachhaltigkeitszielen und Welternährungssicherung (Schlussbericht), FK 11NR039; Universität Hohenheim: Stuttgart, Germany, December 2014; p. 231. Available online: https://projekte.uni-hohenheim.de/i410b/download/publikationen/UHOH%20410B%20FNR_BMELV%20FKZ11NR039%20Optimierung%20Biomassenutzung%20final%20report.pdf (accessed on 3 January 2020).
- Amelang, S. Industry Power Prices in Germany: Extremely High – and Low. 4 December 2019. Available online: https://www.cleanenergywire.org/industrial-power-prices-and-energiewende (accessed on 11 January 2020).
- Electricity Price Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics (accessed on 11 January 2020).
- An Analysis of Energy Production Costs from Anaerobic Digestion Systems on U.S Livestock Production Facilities; Technical Note No. 1; USDA: Washington, DC, USA, October 2007; Available online: https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=22533.wba (accessed on 11 January 2020).
- Financial Analysis of Biomethane Production. Available online: http://www.suscon.org/pdfs/cowpower/biomethaneSourcebook/Chapter_8.pdf (accessed on 17 February 2020).
- Road Transport: The Cost of Renewable Solutions. IRENA Report. 2013. Available online: https://www.irena.org/-/media/Files/IRENA/Costs/Renewable-Costing-Alliance/Road_Transport.pdf?la=en&hash=A0E526B4D007F3E759DDBD9A27205E409DF40CF5 (accessed on 15 January 2020).
- Yii-Der, Y. Economic Cost Analysis of Biodiesel Production: Case in Soybean Oil. Energy Fuels 2008, 22, 182–189. [Google Scholar] [CrossRef]
- Daniel-Gromke, J.; Rensberg, N.; Denysenko, V.; Stinner, W.; Schmalfuß, T.; Scheftelowitz, M.; Nelles, M.; Liebetrau, J. Current Developments in Production and Utilization of Biogas and Biomethane in Germany. Chem. Ing. Technol. 2018, 90, 17–35. [Google Scholar] [CrossRef]
- Havrysh, V.; Nitsenko, V.; Bilan, Y.; Streimikiene, D. Assessment of optimal location for a centralized biogas upgrading facility. Energy Environ. 2019, 30, 462–480. [Google Scholar] [CrossRef]
- Gas Infrastructure Europe (GIE); European Biogas Association (EBA). European Biomethane Map: Infrastructure for Biomethane Production 2018. Available online: https://www.gie.eu/download/maps/2018/GIE_BIO_2018_A0_1189x841.pdf (accessed on 28 February 2020).
- Schmid, C.; Horschig, T.; Pfeiffer, A.; Szarka, N.; Thrän, D. Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries. Energies 2019, 12, 3803. [Google Scholar] [CrossRef] [Green Version]
- Aui, A.; Wright, M.M. Life Cycle Cost Analysis of the Operations of Anaerobic Digesters in Iowa; Grant Number 17ARRA001; Iowa State University: Ames, IA, USA, 2018; Available online: http://iowabiogasmodel.us/Anaerobic_Digestion_LCA_Final_Report.pdf (accessed on 28 February 2020).
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Profitability Analysis for Biomethane: A Strategic Role in the Italian Transport Sector. Int J. Energy Econ. Policy 2015, 5, 440–449. Available online: https://ideas.repec.org/a/eco/journ2/2015-02-07.html (accessed on 3 March 2020).
- Cesaro, A.; Belgiorno, V. Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application. Energies 2015, 8, 8121–8144. [Google Scholar] [CrossRef]
- Esposito, E.; Dellamuzia, L.; Moretti, U.; Fuoco, A.; Giorno, L.; Jansen, J.C. Simultaneous production of biomethane and food grade CO2 from biogas: An industrial case study. Energy Environ. Sci. 2019, 12, 281. [Google Scholar] [CrossRef]
- IEA Bioenergy Task 37—Country Reports Summary 2017. Available online: https://task37.ieabioenergy.com/country-reports.html (accessed on 3 March 2020).
- Global Petrol Prices. Available online: https://www.globalpetrolprices.com/gasoline_prices/#hl227 (accessed on 3 March 2020).
- Carbon Dioxide in Ukraine. Available online: https://zakupka.com/k/tehnicheskaya-uglekislota/ (accessed on 3 March 2020).
- Zhuk, H. Biogas Technologies—Ukrainian Perspective. Available online: https://www.beic.nu/resources/03_Hennadiy_Zhuk.pdf (accessed on 3 March 2020).
- Optimal Use of Biogas from Waste Streams. An Assessment of the Potential of Biogas from Digestion in the EU beyond 2020 European Commission. Final Report. December 2016. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/ce_delft_3g84_biogas_beyond_2020_final_report.pdf (accessed on 9 March 2020).
- Italy – 2018 Update, Bioenergy Policies and Status of Implementation. IEA Bioenergy, IEA. September 2018. Available online: https://www.ieabioenergy.com/wp-content/uploads/2018/10/CountryReport2018_Italy_final.pdf (accessed on 5 March 2020).
- European Parliament, Council of the European Union. Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources: ILUC 2015/1513. O. J. Eur. Union 2015, 239, 1–29. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L1513&from=EN (accessed on 5 March 2020).
- German Federal Ministry for Economic Affairs and Energy Renewable Energy Sources Act (EEG 2017). Available online: https://www.bmwi.de/Redaktion/EN/Downloads/renewable-energy-sources-act-2017.pdf%3F__blob%3DpublicationFile%26v%3D3 (accessed on 9 March 2020).
- Lönnqvist, T.; Sandberg, T.; Birbuet, J.C.; Olsson, J.; Espinosa, C.; Thorin, E.; Gronkvist, S.; Gomez, M.F. Large-scale biogas generation in Bolivia—A stepwise reconfiguration. J. Clean. Prod. 2018, 180, 494–504. [Google Scholar] [CrossRef]
- Meyer, A.K.P.; Ehimen, E.A.; Holm-Nielsen, J.B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy 2018, 111, 154–164. [Google Scholar] [CrossRef]
- Poeschl, M.; Ward, S.; Owende, P. Prospects for expanded utilization of biogas in Germany. Renew. Sustain. Energy Rev. 2010, 14, 1782–1797. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 16723-1 2016: Natural Gas and Biomethane for Use in Transport and Biomethane for Injection in the Natural Gas Network—Part 1: Specifications for Biomethane for Injection in the Natural Gas Network: Work Item Number: 00408006. 2016. Available online: https://ilnas.services-publics.lu/ecnor/downloadPreview.action?documentReference=198423 (accessed on 9 March 2020).
- European Committee for Standardization. EN 16723-2. 2017: Natural Gas and Biomethane for Use in Transport and Biomethane for Injection in the Natural Gas Network—Part 2: Automotive Fuels Specification: Work Item Number: 00408005. 2017. Available online: https://infostore.saiglobal.com/en-us/Standards/EN-16723-2-2017-342578_SAIG_CEN_CEN_784469/ (accessed on 9 March 2020).
- Technology Center Ltd. Biogas Data on Biogas. Swedish Gas. 2012. Available online: http://www.sgc.se/ckfinder/userfiles/files/BasicDataonBiogas2012.pdf (accessed on 9 March 2020).
- Mathiasson, A.; Swedich Gas Association. Present Status and Future Projects of Biomethane in Sweden (Scandinavia). Available online: https://docplayer.net/21322963-Present-status-and-future-projects-of-biomethane-in-sweden-scandinavia-anders-mathiasson-malmo-2016-05-12-senior-advisor-swedish-gas-association.html (accessed on 9 March 2020).
- The Swedish-Norwegian electricity Certificate Market. Annual Report 2018. Available online: https://energimyndigheten.a-w2m.se/FolderContents.mvc/Download?ResourceId=136635 (accessed on 9 March 2020).
- Sehgal, K. Current State and Future Prospects of Global Biogas Industry. In Biogas. Biofuel and Biorefinery Technologies; Springer: Cham, Switzerland, 2018; pp. 449–472. ISBN 978-3-319-77334-6. [Google Scholar] [CrossRef]
- Biogas Technology Suppliers Directory. 2018. Available online: https://bioenergyinternational.com/app/uploads/sites/3/2019/01/Biogas-Technology-Suppliers-Directory_103.pdf (accessed on 21 March 2020).
- Leading Companies in Biogas Technology. Companies Catalogue. January 2018. Available online: https://www.europeanbiogas.eu/wp-content/uploads/2019/05/Companies-Catalogue-EBA-2018.pdf (accessed on 21 March 2020).
- The Gas Institute of the National Academy of Sciences of Ukraine. Available online: www.gas-inst.org.ua (accessed on 21 March 2020).
- Law 16.10.1997 № 575/97-ВР. Available online: https://zakon.rada.gov.ua/laws/show/575/97-%D0%B2%D1%80?lang=uk (accessed on 9 March 2020).
- Brzozowska, A.; Bubel, D.; Kalinichenko, A.; Nekrasenko, L. Transformation of the agricultural financial system in the age of globalization. Agric. Econ. 2017, 63, 548–558. [Google Scholar] [CrossRef] [Green Version]
- Feliv, O. Ukraine’s Green Tariff Attracts Investors, Yet Hurts Economy. Integrites. Available online: https://www.integrites.com/publications/ukraines-green-tariff-attracts-investors-yet-hurts-economy/ (accessed on 9 March 2020).
Type | Installed Power Capacity, MWe | Feedstock | Location | Reference |
---|---|---|---|---|
biomass fired | 740 | Wood pellets | Severn Gorge, UK | [54] |
biomass gasification | 140 | Forest residues | Vaasa, Finland | [55] |
wind power | 8000 (target 20,000 by 2020) | Gansu, China | [56] | |
solar | 2000 | Karnataka’s Tumakuru, India | [57] | |
biogas | 32 | Wastewater | Atotonilco de Tula | [58] |
biogas | 11 | Wastewater | Oakland, USA | [59] |
biogas | 11.35 | dried poultry manure | Germany | [60] |
biogas | 29.5 | Landfill gas | Sao Paulo, Brazil | [61] |
biogas | 12 (target 24) | poultry manure | Ladyzhyn, Ukraine | [62] |
biogas | 15.6 | Sugar beet pulp, corn silage | Teofipol, Ukraine | [63] |
Item | Unit | Germany | EU | Ukraine |
---|---|---|---|---|
Annual biogas production | ktoe | 7631.1 | 16,838.7 | 28.68 |
Arable land area | 1000 ha | 11,730.9 | 70,567 | 27,700 |
Specific biomass production | t/ha | 19.44 | 11.09 | 10.61 |
Adjustment factor | 1 | 0.570 | 0.546 | |
Specific biogas production | ktoe/1000 ha | 0.651 | 0.239 | 0.001 |
Adjusted potential biogas production | ktoe/1000 ha | 0.651 | 0.371 | 0.355 |
Reserve for specific biogas production | ktoe/1000 ha | 0.132 | 0.354 | |
Potential biogas production | ktoe | 26,187.422 | 9834.555 | |
Total reserve | ktoe | 9348.722 | 9805.875 |
Parameter | Unit | Value | Reference |
---|---|---|---|
Electricity price | EUR/kWh | 0.104 | |
Petrol price | EUR/l | 0.96 | [97] |
Diesel fuel price | EUR/l | 0.93 | [97] |
Heating price | EUR/kWh | 0.047 | |
Carbon dioxide price | EUR/kg | 0.362 | [98] |
Power generation efficiency | % | 35 | |
Total efficiency of CHP | % | 80 | |
Biogas boiler efficiency | % | 90 | |
Lower heating value of biogas | MJ/m3 | 21 | |
Carbon dioxide content | % | 35 |
Indicator | Country | ||||
---|---|---|---|---|---|
Germany | Italy | Denmark | Sweden | Ukraine | |
Biogas production and utilization | |||||
Biogas production, ktoe | 7631.1 | 1892.2 | 489.0 | 175.8 | 28.7 |
Average biogas plant capacity, ktoe | 0.696 | 1.143 | 3.396 | 0.888 | 0.870 |
Electricity only: ktoe | 617.9 | 249.3 | 0.07 | 0 | 0 |
% | 8.10 | 13.18 | 0.014 | 0 | 0 |
Heat only: ktoe | 8.7 | 0.1 | 1.9 | 4.5 | 0 |
% | 0.11 | 0.005 | 0.39 | 2.56 | 0 |
Cogeneration ktoe | 6931.1 | 1642.4 | 481.8 | 52.8 | 28.7 |
% | 91.35 | 86.80 | 98.53 | 30.03 | 100 |
Vehicle fuel: ktoe | 33.4 | 0.4 | 5.2 | 118.5 | 0 |
% | 0.44 | 0.02 | 1.06 | 67.41 | 0 |
Sustainability (primary type of feedstock) | |||||
Energy crops | + | ||||
Residues and waste | + | + | + | + | |
Support schemes for electricity | |||||
Feed-in tariff | + | + | + | ||
Feed-in premium | |||||
Auction | + | + | |||
Electricity certificates | + | ||||
National quality standards (biomethane) | |||||
Grid injection | + | + | + | ||
Use as vehicle fuel | + | + | + | ||
Support schemes for biomethane | |||||
Quota | + | ||||
CIC | + | ||||
Tax exemption | + |
Measures | Recommendations | Current Status |
---|---|---|
Sustainability: | ||
Waste (residues) | + | * |
Energy crops | - | * |
Research and production of technology and equipment | + | ¤ |
Support schemes: | ||
Electricity | + | * |
Heat | + | ¤ |
Biomethane | + | ¤ |
Standards for biomethane | + | ¤ |
Utilization pathways: | ||
Electricity | - | * |
Heat | - | * |
Cogeneration | + | * |
Biomethane as vehicle fuel | + | ¤ |
Biomethane and capture of carbon dioxide | + | ¤ |
Capacity: | ||
More than 1000 m3/h | + | * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Havrysh, V.; Kalinichenko, A.; Mentel, G.; Olejarz, T. Commercial Biogas Plants: Lessons for Ukraine. Energies 2020, 13, 2668. https://doi.org/10.3390/en13102668
Havrysh V, Kalinichenko A, Mentel G, Olejarz T. Commercial Biogas Plants: Lessons for Ukraine. Energies. 2020; 13(10):2668. https://doi.org/10.3390/en13102668
Chicago/Turabian StyleHavrysh, Valerii, Antonina Kalinichenko, Grzegorz Mentel, and Tadeusz Olejarz. 2020. "Commercial Biogas Plants: Lessons for Ukraine" Energies 13, no. 10: 2668. https://doi.org/10.3390/en13102668