Relationship among Economic Growth (GDP), Energy Consumption and Carbon Dioxide Emission: Evidence from V4 Countries
Abstract
:1. Introduction
2. Literature Review
- (1)
- forecasting economic time series;
- (2)
- construction and evaluation of economic models;
- (3)
- assessing the consequences of alternative economic policy actions.
3. Data and Methods
4. Methodology
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fuso Nerini, F.; Tomei, J.; To, L.S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Castán Broto, V.; Anandarajah, G.; et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 2018, 3, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Mulugetta, Y.; ben Hagan, E.; Kammen, D. Energy access for sustainable development. Environ. Res. Lett. 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Pueyo, A.; Maestre, M. Linking energy access, gender and poverty: A review of the literature on productive uses of energy. Energy Res. Soc. Sci. 2019, 53, 170–181. [Google Scholar] [CrossRef]
- Albrecht, J.; Gronwald, M.; Karl, H.D.; Pfeiffer, J.; Röpke, L.; Mitarbeit von Lippelt, J. Bedeutung der Energiewirtschaft für die Volkswirtschaf. Studie im Auftrag der RWE AG. Bedeutung der Energiewirtschaft für die Volkswirtschaft: Studie im Auftrag der RWE AG. Available online: https://www.cesifo.org/DocDL/ifo_Forschungsberichte_50.pdf (accessed on 2 November 2021).
- Pao, H.T.; Tsai, C.M. Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries. Energy 2011, 36, 685–693. [Google Scholar] [CrossRef]
- Iwata, H.; Okada, K.; Samreth, S. A note on the environmental Kuznets curve for CO2: A pooled mean group approach. Appl. Energy 2011, 88, 1986–1996. [Google Scholar] [CrossRef]
- Tang, C.F.; Tan, B.W. The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam. Energy 2015, 79, 447–454. [Google Scholar] [CrossRef]
- European Commission. 2030 Climate Target Plan Impact Assessment. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020SC0176 (accessed on 2 November 2021).
- European Commission. What is the European Green Deal? Available online: https://ec.europa.eu/commission/presscorner/api/files/attachment/859152/What_is_the_European_Green_Deal_en.pdf.pdf (accessed on 2 November 2021).
- Mata Pérez, M.D.L.E.; Scholten, D.; Smith Stegen, K. The multi-speed energy transition in Europe: Opportunities and challenges for EU energy security. Energy Strategy Rev. 2019, 26, 100415. [Google Scholar] [CrossRef]
- Bajan, B.; Łukasiewicz, J.; Mrówczyńska-Kamińska, A. Energy consumption and its structures in food production systems of the visegrad group countries compared with eu-15 countries. Energies 2021, 14, 3945. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. The comparative assessment of sustainable energy security in the Visegrad countries. A 10-year perspective. J. Clean. Prod. 2021, 317, 128427. [Google Scholar] [CrossRef]
- Kochanek, E. The energy transition in the visegrad group countries. Energies 2021, 14, 2212. [Google Scholar] [CrossRef]
- Solorio, I. Bridging the gap between environmental policy integration and the EU’s energy policy: Mapping out the “green europeanisation” of energy governance. J. Contemp. Eur. Res. 2011, 7, 396–415. [Google Scholar]
- Ambroziak, Ł.; Chojna, J.; Gniadek, J.; Juszczak, A.; Miniszewski, M.; Strzelecki, J.; Szpor, A.; Śliwowski, P.; Święcicki, I.; Wąsiński, M. Grupa Wyszehradzka—30 lat Transformacji, Integracji i Rozwoju; Polski Instytut Ekonomiczny: Warszawa, Poland, 2020. [Google Scholar]
- Cieślik, E. Looking for the sectoral interdependence: Evidence from the Visegrad countries and China. Qual. Quant. 2019, 53, 2041–2062. [Google Scholar] [CrossRef] [Green Version]
- Łącka, I.; Myszczyszyn, J.; Gołąb, S.; Będzik, B.; Suproń, B. Correlation between the Level of Economic Growth and Foreign Trade: The Case of the V4 Countries. Eur. Res. Stud. J. 2020, 3, 657–678. [Google Scholar] [CrossRef]
- Drews, A. Comparison of the economic business conditions in the countries of the Visegrad Group. Acta Univ. Nicolai Copernici. Zarządzanie 2016, 1, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Hadas-Dyduch, M.; Koutsky, J.; Meluzinova, J.; Balcerzak, A.P.; Pietrzak, M.B. Multi Resolution Analysis of the Global Financial Crisis Influence on the GDP Growth in Visegrad Countries. IBIMA 2018. Available online: http://www.scopus.com/inward/record.url?eid=2-s2.0-85074062940&partnerID=MN8TOARS (accessed on 2 November 2021).
- Gillman, M. Macroeconomic trends among Visegrad Countries, EU, balkans, and the U.S., 1991–2021. Cent. Eur. Bus. Rev. 2021, 10, 1–20. [Google Scholar] [CrossRef]
- Jóźwik, B.; Gavryshkiv, A.; Gruszecki, L. Relacje Wzrostu Gospodarczego i Emisji Dwutlenku Węgla w Państwach Europy Środkowej. Prace Instytutu Europy Środkowej 2020. Available online: https://ies.lublin.pl/wp-content/uploads/2020/10/prace_ies_2020-016-1.pdf (accessed on 2 November 2021).
- Dyduch, J.; Skorek, A. Go South! Southern dimension of the V4 states’ energy policy strategies—An assessment of viability and prospects. Energy Policy 2020, 140, 111372. [Google Scholar] [CrossRef]
- World Energy Trilemma Index. World Energy Council in Partnership with Oliver Wyman (World_Energy_Trilemma_Index_2020_-_REPORT.pdf (2020)). Available online: https://www.oliverwyman.com/content/dam/oliver-wyman/global/en/2016/june/Trilemma_PR_2016.pdf (accessed on 2 November 2021).
- Granger, C.W.J. Investigating Causal Relationships by Econometric Models and Cross-Spectral Methods. Econometrica 1969, 36, 424–438. [Google Scholar] [CrossRef]
- Vera, J.; Kristjanpoller, W. Causalidad de Granger entre composición de las exportaciones, crecimiento económico y producción de energía eléctrica:evidencia empírica para Latinoamérica. Lecturasde Economía 2017, 86, 25–62. [Google Scholar] [CrossRef] [Green Version]
- Balassa, B. Exports and economic growth: Further evidence. J. Dev. Econ. 1978, 5, 181–189. [Google Scholar] [CrossRef]
- Kraft, J.; Kraft, A. Relationship between energy and GNP. J. Energy Dev. 1978, 3, 401–403. [Google Scholar]
- Feder, G. On exports and economic growth. J. Dev. Econ. 1983, 12, 59–73. [Google Scholar] [CrossRef]
- Akarca, A.; Long, T. Relationship between energy and GNP: A reexamination. J. Energy Dev. 1980, 5, 326–331. [Google Scholar]
- Yu, E.; Choi, J.-Y. The causal relationship between energy and GNP: An International Comparison. J. Energy Dev. 1985, 10, 249–272. [Google Scholar]
- Abosedra, S.; Baghestani, H. New Evidence on the Causal Relationship between United States Energy Consumption and Gross National Product. J. Energy Dev. 1989, 14, 285–292. [Google Scholar]
- Hwang, D.; Gum, B. The causal relationship between energy and GNP: The case of Taiwan. J. Energy Dev. 1991, 16, 19–226. [Google Scholar]
- Glasure, Y.; Lee, A.-R. Cointegration, error-correction, and the relationship between GDP and energy: The case of South Korea and Singapore. Resour. Energy Econ. 1998, 20, 17–25. [Google Scholar] [CrossRef]
- Stern, D. A multivariate cointegration analysis of the role of energy in the US macroeconomy. Energy Econ. 2000, 22, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, R.; Paul, S. Causality between energy consumption and economic growth in India: A note on conflicting results. Energy Econ. 2004, 26, 977–983. [Google Scholar] [CrossRef]
- Payne, J.E. A survey of the electricity consumption-growth literature. Appl. Energy 2010, 87, 723–731. [Google Scholar] [CrossRef]
- Payne, J.E. Survey of the international evidence on the causal relationship between energy consumption and growth. J. Econ. Stud. 2010, 37, 53–95. [Google Scholar] [CrossRef]
- Menegaki, A.N. On energy consumption and GDP studies; A meta-analysis of the last two decades. Renew. Sustain. Energy Rev. 2014, 29, 31–36. [Google Scholar] [CrossRef]
- Holtz-Eakin, D.; Selden, T. Stoking the fires? CO2 emissions and economic growth. J. Public Econ. 1995, 1, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.I.; Common, M.S.; Barbier, E.B. Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development. World Dev. 1996, 24, 1151–1160. [Google Scholar] [CrossRef]
- Ang, J.B. CO2 emissions, energy consumption, and output in France. Energy Policy 2007, 35, 4772–4778. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Jalil, A.; Mahmud, S.F. Environment Kuznets curve for CO2 emissions: A cointegration analysis for China. Energy Policy 2009, 37, 5167–5172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-P.; Cheng, X.-M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 2009, 68, 2706–2712. [Google Scholar] [CrossRef]
- Chang, C.C. A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China. Appl. Energy 2010, 87, 3533–3537. [Google Scholar] [CrossRef]
- Shahbaz, M.; Lean, H.H. Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia. Energy Policy 2012, 40, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Apergis, N.; Payne, J. Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 2010, 38, 656–660. [Google Scholar] [CrossRef]
- Bartleet, M.; Rukmani, G. Energy consumption and economic growth in New Zealand: Results of trivariate and multivariate models. Energy Policy 2010, 38, 3508–3517. [Google Scholar] [CrossRef]
- Arouri, M.; Youssef, A.; M’henni, H.; Rault, C. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Papież, M. CO2 emissions, energy consumption and economic growth in the Visegrad Group countries: A panel data analysis, in materials. In Proceedings of the 31st International Conference on Mathematical Methods in Economics, Jihlava, Czech Republic, 11–13 September 2013. [Google Scholar]
- Litavcová, E.; Chovancová, J. Economic Development, CO2 Emissions and Energy Use Nexus 2—Evidence from the Danube Region Countries. Energies 2021, 14, 3165. [Google Scholar] [CrossRef]
- Acaravci, A.; Ozturk, I. On the relationship between energy consumption, CO2 emissions and economic growth in Europe. Energy 2010, 35, 5412–5420. [Google Scholar] [CrossRef]
- Kalimeris, P.; Richardson, C.; Bithas, K. A meta-analysis investigation of the direction of the energy-GDP causal relationship: Implications for the growth-degrowth dialogue. J. Clean. Prod. 2014, 67, 1–13. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. Energy consumption, pollutant emissions and economic growth in South Africa. Energy Econ. 2010, 32, 1374–1382. [Google Scholar] [CrossRef]
- Odugbesan, J.A.; Rjoub, H. Relationship among Economic Growth, Energy Consumption, CO2 Emission, and Urbanization: Evidence from MINT Countries. Sage Open 2020. [Google Scholar] [CrossRef] [Green Version]
- Iwata, H.; Okada, K.; Samreth, S. Empirical study on the environmental Kuznets curve for CO2 in France: The role of nuclear energy. Energy Policy 2010, 38, 4057–4063. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Lean, H.H. The dynamics of electricity consumption and economic growth: A revisit study of their causality in Pakistan. Energy Policy 2012, 39, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Lean, H.H.; Shabbir, M.S. Environmental Kuznets Curve hypothesis in Pakistan: Cointegration and Granger causality. Renew. Sustain. Energy Rev. 2012, 16, 2947–2953. [Google Scholar] [CrossRef] [Green Version]
- Al-Mulali, U.; Fereidouni, H.G.; Lee, J.Y.; Sab, C.N.B.C. Examining the bi-directional long run relationship between renewable energy consumption and GDP growth. Renew. Sustain. Energy Rev. 2013, 22, 209–222. [Google Scholar] [CrossRef]
- Al-mulali, U.; Sab, C.N.C. Energy consumption, pollution and economic development in 16 emerging countries. J. Econ. Stud. 2013, 40, 686–698. [Google Scholar] [CrossRef]
- Krkošková, R. Causality between energy consumption and economic growth in the V4 countries. Technol. Econ. Dev. Econ. 2021, 27, 900–920. [Google Scholar] [CrossRef]
- Streimikiene, D.; Kasperowicz, R. Review of economic growth and energy consumption: A panel cointegration analysis for EU countries. Renew. Sustain. Energy Rev. 2016, 59, 1545–1549. [Google Scholar] [CrossRef]
- Simionescu, M.; Wojciechowski, A.; Tomczyk, A.; Rabe, M. Revised environmental kuznets curve for V4 countries and Baltic states. Energies 2021, 14, 3302. [Google Scholar] [CrossRef]
- Sims, C.A. Macroeconomics and Reality. J. Econometr. Soc. 1980, 48, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.W.J. Developments in the study of cointegrated economic variables. In Long-Run Economic Relationship, Readings in Cointegration; Engle, R.F., Granger, C.W.J., Eds.; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- McAdam, P. A Pedagogical Note on the Long Run of Macroeconomic Models; University of Kent: Kent, UK, 2007. [Google Scholar]
- Osińska, M. (Ed.) Ekonometria Współczesna; Dom Organizatora: Warsaw, Poland, 2007. [Google Scholar]
- Maddala, G.S. Ekonometria; PWN: Warszawa, Poland, 2008; pp. 327–622. [Google Scholar]
- Myszczyszyn, J. The Long-run Relationships between Number of Patents and Economic Growth. Eur. Res. Stud. J. 2020, 3, 548–563. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econometr. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit 719 root: How sure are we that economic time series have a unit root? J. Econometr. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Kripfganz, S.; Schneider, D.C. Response surface regressions for critical value bounds and approximate p-values in equilibrium correction models. Oxf. Bull. Econ. Stat. 2020, 82, 1456–1481. [Google Scholar] [CrossRef]
- Kripfganz, S.; Schneider, D.C. ARDL: Estimating Autoregressive Distributed Lag and Equilibrium Correction models. Available online: https://ideas.repec.org/p/boc/usug18/09.html (accessed on 2 November 2021).
- McKinsey & Company. Neutralna Emisyjnie Polska 2050, Jak Wyzwanie Zmienić w Szansę. Neutralna Emisyjnie Polska. Available online: https://www.mckinsey.com/pl/our-insights/carbon-neutral-poland-2050 (accessed on 2 November 2021).
- Enerdata Energy Market Research in Hungary. Available online: https://www.enerdata.net/estore/country-profiles/hungary.html (accessed on 13 April 2021).
- Bart, I.; Csernus, D.; Sáfián, F. Analysis of Climateenergy Policies & Implementation in Hungary, Climate Strategy 2050 Institute. Available online: http://eko.org.pl/imgturysta/files/vise/raport_hr_3.pdf (accessed on 2 November 2021).
- PISM. The Polish Institute of International Affairs. The Czech Republic in the Process of Climate and Energy Transformation. Available online: https://www.pism.pl/publikacje/Czechy_w_procesie_transformacji_klimatycznoenergetycznej (accessed on 2 November 2021).
- Polanecky, K. Climate policy implementation in the Czech Republic. Available online: http://eko.org.pl/imgturysta/files/vise/raport_cz_1.pdf (accessed on 2 November 2021).
- Furmanczuk, Z. Climate and Energy Policy in Slovakia. Available online: http://eko.org.pl/imgturysta/files/vise/raport_sl_1.pdf (accessed on 2 November 2021).
- Sulich, A.; Sołoducho-Pelc, L. Renewable Energy Producers’ Strategies in the Visegrád Group Countries. Energies 2021, 14, 3048. [Google Scholar] [CrossRef]
GDP per Capita | ||||||
Country | N | Minimum | Maximum | Median | Mean | Std. Dev. |
Czech Republic | 24 | 19,456.20 | 33,909.31 | 26,118.64 | 26,640.23 | 4868.67 |
Poland | 24 | 10,420.52 | 26,534.72 | 17,250.98 | 18,048.15 | 4918.18 |
Hungary | 24 | 15,533.26 | 26,777.47 | 22,159.48 | 21,107.78 | 3733.35 |
Slovak Republic | 24 | 12,193.29 | 29,927.68 | 19,120.52 | 20,448.55 | 5749.14 |
Energy consumption per capita | ||||||
Country | N | Minimum | Maximum | Median | Mean | Std. Dev. |
Czech Republic | 24 | 3782.89 | 4491.52 | 4100.28 | 4142.28 | 192.08 |
Poland | 24 | 2314.20 | 2680.10 | 2511.79 | 2503.15 | 108.34 |
Hungary | 24 | 2271.95 | 4233.04 | 2507.88 | 2584.54 | 360.55 |
Slovak Republic | 24 | 2943.19 | 3504.48 | 3317.75 | 3299.14 | 150.69 |
Per capita CO2 emissions | ||||||
Country | N | Minimum | Maximum | Median | Mean | Std. Dev. |
Czech Republic | 24 | 9.2311 | 12.8397 | 11.7497 | 11.2420 | 1.0438 |
Poland | 24 | 7.5200 | 9.2469 | 8.2054 | 8.2606 | 0.5201 |
Hungary | 24 | 4.1901 | 6.0191 | 5.6385 | 5.4005 | 0.5484 |
Slovak Republic | 24 | 5.6616 | 8.3287 | 7.2750 | 7.0514 | 0.6955 |
Czech Republic | Hungary | ||||||
Variable | GDP | Energy | CO2 | Variable | GDP | Energy | CO2 |
GDP | 1 | PKB | 1 | ||||
Energy | 0.147313 | 1 | Energy | 0.034715 | 1 | ||
CO2 | −0.81403 | 0.265309 | 1 | CO2 | −0.67659 | 0.540726 | 1 |
Poland | Slovak Republic | ||||||
Variable | GDP | Energy | CO2 | GDP | Energy | CO2 | |
GDP | 1 | PKB | 1 | ||||
Energy | 0.055587 | 1 | Energy | −0.55726 | 1 | ||
CO2 | −0.70715 | 0.655194 | 1 | CO2 | −0.89196 | 0.759503 | 1 |
Variable | Original Variables | First Differences | ADF Integration | ||
---|---|---|---|---|---|
ADF Test for A Variable with An Intercept | ADF Test for A Variable with Intercept and Trend | ADF Test for Increments with the Intercept | ADF Test for Increments with A Trend | ||
CZ_CO2 | 0.9724 | 0.3128 | 2.41 × 10−5 | 0.0001883 | I(1) |
HU_CO2 | 0.8924 | 0.5237 | 3.15 × 10−4 | 0.001896 | I(1) |
PL_CO2 | 0.394 | 0.4561 | 0.000469 | 0.00295 | I(1) |
SL_CO2 | 0.9252 | 0.1077 | 0.000002 | 0.000018 | I(1) |
l_CZ_E | 0.5948 | 0.9434 | 0.001913 | 0.008127 | I(1) |
l_HU_E | 0.03096 | 0.9036 | 0.006705 | 0.0002757 | I(1) |
l_PL_E | 0.3307 | 0.6457 | 0.000943 | 0.005263 | I(1) |
l_SL_E | 0.5774 | 0.9521 | 0.003079 | 0.006764 | I(1) |
l_CZ_GDP | 0.7667 | 0.2915 | 0.009775 | 0.04901 | I(1) |
l_HU_GDP | 0.7173 | 0.1545 | 0.03495 | 0.1103 | I(1) |
l_PL_GDP | 0.3218 | 0.1516 | 0.09633 | 0.03306 | I(1) |
l_SL_GDP | 0.7861 | 0.4392 | 0.01446 | 0.04863 | I(1) |
Variable | KPSS Test for the Variable (p Value) | KPSS Test for 1st Differences (p-Value) | KPSS Integration |
---|---|---|---|
Critical Val. | 0.462 | ||
CZ_CO2 | 0.637008 | 0.09983 | I(1) |
HU_CO2 | 0.576822 | 0.16810 | I(1) |
PL_CO2 | 0.495913 | 0.11425 | I(1) |
SL_CO2 | 0.669881 | 0.10066 | I(1) |
l_CZ_E | 0.12902 | 0.15263 | I(1) |
l_HU_E | 0.437966 | 0.54019 | I(0) |
l_PL_E | 0.12648 | 0.10586 | I(0) |
l_SL_E | 0.555051 | 0.21454 | I(1) |
l_CZ_GDP | 0.688504 | 0.10937 | I(1) |
l_HU_GDP | 0.665321 | 0.11963 | I(1) |
l_PL_GDP | 0.706934 | 0.25673 | I(1) |
l_SL_GDP | 0.700959 | 0.11065 | I(1) |
Country | Dep. Variable | F-Statistics | I(0) | I(1) | Cointegration | Decision |
---|---|---|---|---|---|---|
Poland (PL) | GDP | 1.71338 | 3.538 | 4.428 | NO | short-run model |
CO2 | 5.79441 | 3.538 | 4.428 | YES | ECM (error correction model) | |
Energy | 6.56082 | 3.538 | 4.428 | YES | ECM (error correction model) | |
Hungary (HU) | GDP | 2.43395 | 3.538 | 4.428 | NO | short-run model |
CO2 | 25.4136 | 3.538 | 4.428 | YES | Estimate ECM (error correction model) | |
Energy | 3.447 | 3.538 | 4.428 | NO | short-run model | |
Czech Republik (Cz) | GDP | 3.05207 | 3.538 | 4.428 | NO | short-run model |
CO2 | 3.48921 | 3.538 | 4.428 | NO | short-run model | |
Energy | 2.92498 | 3.538 | 4.428 | NO | short-run model | |
Slovakia (SV) | GDP | 2.129 | 3.538 | 4.428 | NO | short-run model |
CO2 | 2.43360 | 3.538 | 4.428 | NO | short-run model | |
Energy | 2.80193 | 3.538 | 4.428 | NO | short-run model |
Country | Dep. Variable | Short-Run Statistics | Long-Run Statistics | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
l_GDP | CO2 | l_EC | |||||||||||||||
t-1 | t-2 | t-3 | t-4 | t-5 | t-1 | t-2 | t-3 | t-4 | t-5 | t-1 | t-2 | t-3 | t-4 | t-5 | ECT | ||
PL | l_GDP | 0.5 | 0.37 | −0.66 | 0.53 | −0.09 | −0.25 ** | 0.24 | 0.04 | 0.13 | −0.35 ** | 2.96 ** | −2.58 | −0.3 | −0.76 | 2.53** | −0.09 *** |
CO2 | −1.07 | 4.88 | −12.88 | −0.02 | 1.38 | −7.27 | −0.53 | 1.11 | 4.91 ** | −2.69 | 67.62 ** | −0.9 | −11.89 | −38.8 ** | 18.08 | −1.17 *** | |
l_E | −0.22 | 0.79 | −1.31 | −0.16 | 0.17 | −0.77 ** | −0.06 | 0.04 | 0.55 ** | −0.29 | 7.29 ** | −0.06 | −0.76 | −4.26 ** | 1.9 | −0.12 *** | |
HU | l_GDP | 0.67 | −0.12 | 0.39 | −0.13 | 0.05 | −0.02 | −0.02 | −0.06 | −0.69 | 0.21 | 0.17 | 0.24 | −0.07 * | |||
CO2 | 5.47 | −7.78 | 4.49 | 1.8 | 0.64 | 0.42 | 0.27 | 0.01 | −8.56 ** | 2.9 | −3.47 | −0.93 | |||||
l_E | −0.31 | −0.27 | 1.18 | −0.04 | 0.17 ** | 0.07 | 0.01 | −0.09 | −1.11 * | −0.03 | −0.28 | 0.68 | |||||
CZ | l_GDP | 2.36 * | −0.21 | 0.36 | 0.19 | −0.3 | 0.03 | 0.03 | −0.01 | 0.02 | 0.16 ** | −1.29 | −1.07 | 0.5 | −0.58 | −2.41 ** | |
CO2 | 23.41 | 2.98 | −2.61 | −0.79 | −4.88 | 0.38 | 0.51 | 0.28 | 0.55 | 2.22 | −20.11 | −18.79 | 6.59 | −9.77 | −28.54 | −1.55 ** | |
l_E | 2.67 | 0.22 | 0.25 | −0.17 | 0.02 | 0.08 * | 0.07 | 0.06 | 0.09 | 0.22 * | −2.26 * | −1.58 | −0.08 | −1.47 * | −3.53 * | −0.04 | |
SV | l_GDP | 0.74 *** | −0.05 | −0.04 | 0.02 | 0.16 | −0.18 | ||||||||||
CO2 | 0.76 | −3.5 ** | −0.58 *** | 0.11 | 0.02 | −1.95 ** | −1.38 ** | ||||||||||
l_E | −0.03 | 0.52 *** | 0.01 | 0.05 *** | 0.03 | −0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myszczyszyn, J.; Suproń, B. Relationship among Economic Growth (GDP), Energy Consumption and Carbon Dioxide Emission: Evidence from V4 Countries. Energies 2021, 14, 7734. https://doi.org/10.3390/en14227734
Myszczyszyn J, Suproń B. Relationship among Economic Growth (GDP), Energy Consumption and Carbon Dioxide Emission: Evidence from V4 Countries. Energies. 2021; 14(22):7734. https://doi.org/10.3390/en14227734
Chicago/Turabian StyleMyszczyszyn, Janusz, and Błażej Suproń. 2021. "Relationship among Economic Growth (GDP), Energy Consumption and Carbon Dioxide Emission: Evidence from V4 Countries" Energies 14, no. 22: 7734. https://doi.org/10.3390/en14227734