Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review
Abstract
:1. Introduction
2. Electrical Power Sector and Economic Development
3. Sustainable Development and Electric Power
4. Critical Factors Influencing Renewable Energy Generation
4.1. Economic Benefits of Renewable Energy Projects
4.2. Legal and Policy Boost Factors for Renewable Energy Project Development
4.3. Social Acceptance of Renewable Energy Projects and Environmental Issues
4.4. Adverse Impact of Renewable Energy Projects on the Environment
5. Impact of Renewables on the Utility Side and Their Benefits for the Grid
5.1. The Role of RES as Elements Acting for the Benefit of the Grid
5.2. RES in Voltage Regulation and Reducing Infrastructure Investments
5.3. Renewable Energy Impact at the Utility Side and the Benefits for the System
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanoğlu, M.; Çengel, Y.A.; Cimbala, J.M. Fundamentals and Applications of Renewable Energy; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Lisin, E.; Shuvalova, D.; Volkova, I.; Strielkowski, W. Sustainable Development of regional power systems and the consumption of electric energy. Sustainability 2018, 10, 1111. [Google Scholar] [CrossRef] [Green Version]
- Tishkov, S.; Shcherbak, A.; Karginova-Gubinova, V.; Volkov, A.; Tleppayev, A.; Pakhomova, A. Assessment the role of renewable energy in socio-economic development of rural and Arctic regions. Entrep. Sustain. Issues 2020, 7, 3354–3368. [Google Scholar] [CrossRef]
- Andryeyeva, N.; Nikishyna, O.; Burkynskyi, B.; Khumarova, N.; Laiko, O.; Tiutiunnyk, H. Methodology of analysis of the influence of the economic policy of the state on the environment. Insights Reg. Dev. 2021, 3, 198–212. [Google Scholar] [CrossRef]
- Ucal, M.; Xydis, G. Multidirectional relationship between energy resources, climate changes and sustainable development: Technoeconomic analysis. Sustain. Cities Soc. 2020, 60, 102210. [Google Scholar] [CrossRef]
- Nasr, A.K.; Kashan, M.K.; Maleki, A.; Jafari, N.; Hashemi, H. Assessment of barriers to renewable energy development using stakeholders approach. Entrep. Sustain. Issues 2020, 7, 2526–2541. [Google Scholar] [CrossRef] [Green Version]
- Aghahosseini, A.; Breyer, C. Assessment of geological resource potential for compressed air energy storage in global electricity supply. Energy Convers. Manag. 2018, 169, 161–173. [Google Scholar] [CrossRef]
- EIA. Renewables Account for Most New U.S. Electricity Generating Capacity in 2021. 2021. Available online: https://www.eia.gov/todayinenergy/detail.php?id=46416 (accessed on 10 October 2021).
- IAEA. The Use of Nuclear Power Beyond Generating Electricity: Non-Electric Applications. 2021. Available online: https://www.iaea.org/newscenter/news/the-use-of-nuclear-power-beyond-generating-electricity-non-electric-applications (accessed on 18 October 2021).
- Nelson, V.C.; Starcher, K.L. Introduction to Renewable Energy; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Dudin, M.N.; Frolova, E.E.; Protopopova, O.V.; Mamedov, O.; Odintsov, S.V. Study of innovative technologies in the energy industry: Nontraditional and renewable energy sources. Entrep. Sustain. Issues 2019, 6, 1704–1713. [Google Scholar] [CrossRef]
- Nassar, N.; Tvaronavičienė, M. A systematic theoretical review on sustainable management for green competitiveness. Insights Reg. Dev. 2021, 3, 267–281. [Google Scholar] [CrossRef]
- Brożyna, J.; Strielkowski, W.; Fomina, A.; Nikitina, N.I. Renewable energy and EU 2020 target for energy efficiency in the Czech Republic and Slovakia. Energies 2020, 13, 965. [Google Scholar] [CrossRef] [Green Version]
- World Bank. Transitions at the Heart of the Climate Challenge. 2021. Available online: https://www.worldbank.org/en/news/feature/2021/05/24/transitions-at-the-heart-of-the-climate-challenge (accessed on 11 August 2021).
- European Commission. Renewable Energy Statistics. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/ (accessed on 18 October 2021).
- Eurostat. Renewable Energy Statistics. 2020. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics (accessed on 2 December 2021).
- Elavarasan, R.M. The motivation for renewable energy and its comparison with other energy sources: A review. Eur. J. Sustain. Dev. Res. 2019, 3, 0076. [Google Scholar] [CrossRef]
- IEA. Data and Statistics. 2014. Available online: https://webstore.iea.org/download/summary/436?fileName=English-WEO-Investment-ES.pdf (accessed on 18 July 2021).
- Halkos, G.E.; Gkampoura, E.-C. Reviewing usage, potentials, and limitations of renewable energy sources. Energies 2020, 13, 2906. [Google Scholar] [CrossRef]
- Cooperman, A.; Eberle, A.; Lantz, E. Wind turbine blade material in the United States: Quantities, costs, and end-of-life options. Resour. Conserv. Recycl. 2021, 168, 105439. [Google Scholar] [CrossRef]
- Strielkowski, W.; Volkova, E.; Pushkareva, L.; Streimikiene, D. Innovative policies for energy efficiency and the use of renewables in households. Energies 2019, 12, 1392. [Google Scholar] [CrossRef] [Green Version]
- Child, M.; Kemfert, C.; Bogdanov, D.; Breyer, C. Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe. Renew. Energy 2019, 139, 80–101. [Google Scholar] [CrossRef]
- Abdelmotteleb, I.; Gómez, T.; Chaves-Ávila, J.P.; Reneses, J. Designing efficient distribution network charges in the context of active customers. Appl. Energy 2018, 210, 815–826. [Google Scholar] [CrossRef]
- IEA. World Total Energy Supply by Source, 1971–2018. 2020. Available online: https://www.iea.org/data-and-statistics/charts/world-total-energy-supply-by-source-1971–2018 (accessed on 16 November 2021).
- Bukari, D.; Kemausuor, F.; Quansah, D.A.; Adaramola, M.S. Towards accelerating the deployment of decentralised renewable energy mini-grids in Ghana: Review and analysis of barriers. Renew. Sustain. Energy Rev. 2021, 135, 110408. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Zhu, D.; Mortazavi, S.M.; Maleki, A.; Aslani, A.; Yousefi, H. Analysis of the robustness of energy supply in Japan: Role of renewable energy. Energy Rep. 2020, 6, 378–391. [Google Scholar] [CrossRef]
- Lavrinenko, O.; Ignatjeva, S.; Ohotina, A.; Rybalkin, O.; Lazdans, D. The role of green economy in sustainable development (case study: The EU States). Entrep. Sustain. Issues 2019, 6, 1113–1126. [Google Scholar] [CrossRef]
- Pitelis, A.; Vasilakos, N.; Chalvatzis, K. Fostering innovation in renewable energy technologies: Choice of policy instruments and effectiveness. Renew. Energy 2020, 151, 1163–1172. [Google Scholar] [CrossRef]
- Hunt, J.D.; Byers, E.; Riahi, K.; Langan, S. Comparison between seasonal pumped-storage and conventional reservoir dams from the water, energy and land nexus perspective. Energy Convers. Manag. 2018, 166, 385–401. [Google Scholar] [CrossRef]
- Rauf, H.; Gull, M.S.; Arshad, N. Complementing hydroelectric power with floating solar PV for daytime peak electricity demand. Renew. Energy 2020, 162, 1227–1242. [Google Scholar] [CrossRef]
- Kot, S. Sustainable supply chain management in small and medium enterprises. Sustainability 2018, 10, 1143. [Google Scholar] [CrossRef] [Green Version]
- Mura, L.; Hajduová, Z. Small and medium enterprises in regions-empirical and quantitative approach. Insights Reg. Dev. 2021, 3, 252–266. [Google Scholar] [CrossRef]
- Al Hadi, A.; Silva, C.A.S.; Hossain, E.; Challoo, R. Algorithm for demand response to maximize the penetration of renewable energy. IEEE Access 2020, 8, 55279–55288. [Google Scholar] [CrossRef]
- Strielkowski, W.; Firsova, I.; Lukashenko, I.; Raudeliūnienė, J.; Tvaronavičienė, M. Effective management of energy consumption during the COVID-19 pandemic: The role of ICT solutions. Energies 2021, 14, 893. [Google Scholar] [CrossRef]
- Pombo, O.; Rivela, B.; Neila, J. Life cycle thinking toward sustainable development policy-making: The case of energy retrofits. J. Clean. Prod. 2019, 206, 267–281. [Google Scholar] [CrossRef]
- Singh, A.K.; Idrisi, A.H. Evolution of renewable energy in India: Wind and solar. J. Inst. Eng. (India) Ser. C 2019, 101, 415–427. [Google Scholar] [CrossRef]
- Li, A.; Xu, Y.; Shiroyama, H. Solar lobby and energy transition in Japan. Energy Policy 2019, 134, 110950. [Google Scholar] [CrossRef]
- Pardo-Cueva, M.; Dávila, G.A.; Chamba-Rueda, L.M. Discovering the role of intellectual capital in Latin America: Insights from Ecuador. Entrep. Sustain. Issues 2020, 8, 1006–1026. [Google Scholar] [CrossRef]
- Oryani, B.; Koo, Y.; Rezania, S.; Shafiee, A. Barriers to renewable energy technologies penetration: Perspective in Iran. Renew. Energy 2021, 174, 971–983. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Bang, Y.H.; Di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Yang, Z.; Wei, Y.; Zeng, Y.; Yuan, Y. Effects of in-situ bismuth catalyst electrodeposition on performance of vanadium redox flow batteries. J. Power Sources 2021, 506, 230238. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, X.; Zhang, D.; Xiao, J. Socio-economic development and electricity access in developing economies: A long-run model averaging approach. Energy Policy 2019, 132, 223–231. [Google Scholar] [CrossRef]
- Setyowati, A.B. Mitigating inequality with emissions? Exploring energy justice and financing transitions to low carbon energy in Indonesia. Energy Res. Soc. Sci. 2021, 71, 101817. [Google Scholar] [CrossRef]
- Nock, D.; Levin, T.; Baker, E. Changing the policy paradigm: A benefit maximization approach to electricity planning in developing countries. Appl. Energy 2020, 264, 114583. [Google Scholar] [CrossRef]
- Almeshqab, F.; Ustun, T.S. Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects. Renew. Sustain. Energy Rev. 2019, 102, 35–53. [Google Scholar] [CrossRef]
- Manju, S.; Sagar, N. Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India. Renew. Sustain. Energy Rev. 2017, 73, 594–609. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. New approaches for ecological and social sustainability in a post-pandemic world. World 2020, 1, 191–204. [Google Scholar] [CrossRef]
- Svartzman, R.; Bolton, P.; Despres, M.; Da Silva, L.A.P.; Samama, F. Central banks, financial stability and policy coordination in the age of climate uncertainty: A three-layered analytical and operational framework. Clim. Policy 2021, 21, 563–580. [Google Scholar] [CrossRef]
- Surie, G. Creating the innovation ecosystem for renewable energy via social entrepreneurship: Insights from India. Technol. Forecast. Soc. Chang. 2017, 121, 184–195. [Google Scholar] [CrossRef]
- Lyulyov, O.; Pimonenko, T.; Kwilinski, A.; Dzwigol, H.; Dzwigol-Barosz, M.; Pavlyk, V.; Barosz, P. The impact of the government policy on the energy efficient gap: The evidence from Ukraine. Energies 2021, 14, 373. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raghutla, C.; Chittedi, K.R.; Jiao, Z.; Vo, X.V. The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index. Energy 2020, 207, 118162. [Google Scholar] [CrossRef]
- Mikhaylov, A.; Moiseev, N.; Aleshin, K.; Burkhardt, T. Global climate change and greenhouse effect. Entrep. Sustain. Issues 2020, 7, 2897–2913. [Google Scholar] [CrossRef]
- Ribbing, S.; Xydis, G. Renewable energy at home: A look into purchasing a wind turbine for home use—The cost of blindly relying on one tool in decision making. Clean Technol. 2021, 3, 299–310. [Google Scholar] [CrossRef]
- Fischhendler, I.; Herman, L.; Barr, A.; Rosen, G. The impact of community split on the acceptance of wind turbines. Sol. Energy 2021, 220, 51–62. [Google Scholar] [CrossRef]
- Strielkowski, W.; Streimikiene, D.; Bilan, Y. Network charging and residential tariffs: A case of household photovoltaics in the United Kingdom. Renew. Sustain. Energy Rev. 2017, 77, 461–473. [Google Scholar] [CrossRef]
- Nong, D.; Wang, C.; Al-Amin, A.Q. A critical review of energy resources, policies and scientific studies towards a cleaner and more sustainable economy in Vietnam. Renew. Sustain. Energy Rev. 2020, 134, 110117. [Google Scholar] [CrossRef]
- IEA. Southeast Asia Energy Outlook 2019. 2019. Available online: https://www.iea.org/reports/southeast-asia-energy-outlook-2019 (accessed on 17 November 2021).
- United Nations. The Sustainable Development Goals Report. 2019. Available online: https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf (accessed on 12 August 2021).
- Reber, T.; Booth, S. Tariff structures to encourage micro-grid deployment in Sub-Saharan Africa: Review and recent trends. Curr. Sustain. Energy Rep. 2018, 5, 199–204. [Google Scholar] [CrossRef]
- Alkaisi, A.; Mossad, R.; Sharifian-Barforoush, A. A review of the water desalination systems integrated with renewable energy. Energy Procedia 2017, 110, 268–274. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Zhou, P.; Walasai, G.; Mohsin, M. Energy security and environmental sustainability index of South Asian countries: A composite index approach. Ecol. Indic. 2019, 106, 105507. [Google Scholar] [CrossRef]
- Nouni, M.; Jha, P.; Sarkhel, R.; Banerjee, C.; Tripathi, A.K.; Manna, J. Alternative fuels for decarbonisation of road transport sector in India: Options, present status, opportunities, and challenges. Fuel 2021, 305, 121583. [Google Scholar] [CrossRef]
- Sutrisno, A.; Nomaler, Ö.; Alkemade, F. Has the global expansion of energy markets truly improved energy security? Energy Policy 2021, 148, 111931. [Google Scholar] [CrossRef]
- Rokicki, T.; Perkowska, A. Diversity and changes in the energy balance in EU countries. Energies 2021, 14, 1098. [Google Scholar] [CrossRef]
- Aslanturk, O.; Kıprızlı, G. The role of renewable energy in ensuring energy security of supply and reducing energy-related import. Int. J. Energy Econ. Policy 2020, 10, 354–359. [Google Scholar] [CrossRef]
- Hussein, H.; Lambert, L.A. A rentier state under blockade: Qatar’s water-energy-food predicament from energy abundance and food insecurity to a silent water crisis. Water 2020, 12, 1051. [Google Scholar] [CrossRef] [Green Version]
- Peña-García, A.; Salata, F. The perspective of total lighting as a key factor to increase the sustainability of strategic activities. Sustainability 2020, 12, 2751. [Google Scholar] [CrossRef] [Green Version]
- Mahalik, M.K.; Villanthenkodath, M.A.; Mallick, H.; Gupta, M. Assessing the effectiveness of total foreign aid and foreign energy aid inflows on environmental quality in India. Energy Policy 2021, 149, 112015. [Google Scholar] [CrossRef]
- Dong, F.; Hua, Y.; Yu, B. Peak carbon emissions in China: Status, key factors and countermeasures—A literature review. Sustainability 2018, 10, 2895. [Google Scholar] [CrossRef] [Green Version]
- OECD. Electricity Generation. 2021. Available online: https://data.oecd.org/energy/electricity-generation.htm (accessed on 17 November 2021).
- Tabrizian, S. Technological innovation to achieve sustainable development—Renewable energy technologies diffusion in developing countries. Sustain. Dev. 2019, 27, 537–544. [Google Scholar] [CrossRef]
- Bishoge, O.K.; Zhang, L.; Mushi, W.G. The potential renewable energy for sustainable development in Tanzania: A review. Clean Technol. 2018, 1, 70–88. [Google Scholar] [CrossRef] [Green Version]
- Lisin, E.; Epifanov, V.; Masyutin, S. Economic aspects of formation of united electric power markets. Terra Econ. 2018, 16, 106–117. [Google Scholar] [CrossRef]
- Gulagi, A.; Ram, M.; Solomon, A.; Khan, M.H.; Breyer, C. Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh. Renew. Energy 2020, 155, 899–920. [Google Scholar] [CrossRef]
- Kanda, W.; Kivimaa, P. What opportunities could the COVID-19 outbreak offer for sustainability transitions research on electricity and mobility? Energy Res. Soc. Sci. 2020, 68, 101666. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, M.; Igliński, B.; Kujawski, W.; Iwański, P. Energy transition in Poland—Assessment of the renewable energy sector. Energies 2021, 14, 2046. [Google Scholar] [CrossRef]
- Strielkowski, W. Social Impacts of Smart Grids: The Future of Smart Grids and Energy Market Design; Elsevier: London, UK, 2019. [Google Scholar]
- Baker, L.; Hook, A.; Sovacool, B.K. Power struggles: Governing renewable electricity in a time of technological disruption. Geoforum 2021, 118, 93–105. [Google Scholar] [CrossRef]
- Elavarasan, R.M.; Selvamanohar, L.; Raju, K.; Vijayaraghavan, R.R.; Subburaj, R.; Nurunnabi, M.; Khan, I.A.; Afridhis, S.; Hariharan, A.; Pugazhendhi, R.; et al. A holistic review of the present and future drivers of the renewable energy mix in Maharashtra, State of India. Sustainability 2020, 12, 6596. [Google Scholar] [CrossRef]
- Weiss, R.; Saastamoinen, H.; Ikäheimo, J.; Abdurafikov, R.; Sihvonen, T.; Shemeikka, J. Decarbonised district heat, electricity and synthetic renewable gas in wind-and solar-based district energy systems. J. Sustain. Dev. Energy Water Environ. Syst. 2021, 9, 1–22. [Google Scholar] [CrossRef]
- Pina, E.A.; Lozano, M.A.; Serra, L.M.; Hernández, A.; Lázaro, A. Design and thermoeconomic analysis of a solar parabolic trough–ORC–Biomass cooling plant for a commercial center. Sol. Energy 2021, 215, 92–107. [Google Scholar] [CrossRef]
- Machalek, D.; Mohammadi, K.; Powell, K.M. State-by-State comparison of combined heat and power to photovoltaic installations at manufacturing facilities with heat and power loads. Sustain. Energy Technol. Assess. 2021, 47, 101502. [Google Scholar] [CrossRef]
- Lee, J.T.; Callaway, D.S. The cost of reliability in decentralized solar power systems in sub-Saharan Africa. Nat. Energy 2018, 3, 960–968. [Google Scholar] [CrossRef]
- Neagu, B.-C.; Ivanov, O.; Grigoras, G.; Gavrilas, M.; Istrate, D.-M. New market model with social and commercial tiers for improved prosumer trading in microgrids. Sustainability 2020, 12, 7265. [Google Scholar] [CrossRef]
- Raugei, M.; Kamran, M.; Hutchinson, A. A prospective net energy and environmental life-cycle assessment of the UK electricity grid. Energies 2020, 13, 2207. [Google Scholar] [CrossRef]
- Frattolillo, A.; Canale, L.; Ficco, G.; Mastino, C.C.; Dell’Isola, M. Potential for building façade-integrated solar thermal collectors in a highly urbanized context. Energies 2020, 13, 5801. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2019. 2019. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jun/IRENA_Power_Generation_Costs_2019.pdf (accessed on 8 August 2021).
- Castaneda, M.; Zapata, S.; Aristizabal, A. Assessing the effect of incentive policies on residential PV investments in Colombia. Energies 2018, 11, 2614. [Google Scholar] [CrossRef] [Green Version]
- Leisen, R.; Steffen, B.; Weber, C. Regulatory risk and the resilience of new sustainable business models in the energy sector. J. Clean. Prod. 2019, 219, 865–878. [Google Scholar] [CrossRef]
- Van Der Ploeg, F.; Rezai, A. Stranded assets in the transition to a carbon-free economy. Annu. Rev. Resour. Econ. 2020, 12, 281–298. [Google Scholar] [CrossRef]
- Salet, W. Public norms in practices of transitional planning—The case of energy transition in The Netherlands. Sustainability 2021, 13, 4454. [Google Scholar] [CrossRef]
- Icaza, D.; Borge-Diez, D.; Galindo, S.P. Proposal of 100% renewable energy production for the City of Cuenca-Ecuador by 2050. Renew. Energy 2021, 170, 1324–1341. [Google Scholar] [CrossRef]
- Cabeza, L.F.; de Gracia, A.; Pisello, A.L. Integration of renewable technologies in historical and heritage buildings: A review. Energy Build. 2018, 177, 96–111. [Google Scholar] [CrossRef]
- IRENA. Global Renewables Outlook. 2020. Available online: https://irena.org (accessed on 12 August 2021).
- Maniatis, K.; Chiaramonti, D.; Heuvel, E.V.D. Post COVID-19 recovery and 2050 climate change targets: Changing the emphasis from promotion of renewables to mandated curtailment of fossil fuels in the EU policies. Energies 2021, 14, 1347. [Google Scholar] [CrossRef]
- Brauers, H.; Oei, P.-Y. The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels. Energy Policy 2020, 144, 111621. [Google Scholar] [CrossRef]
- IEEFA. Investors Pouring $3 Billion Daily into Environmental Funds. 2021. Available online: https://ieefa.org/investors-pouring-3-billion-daily-into-environmental-funds (accessed on 12 August 2021).
- IRENA. Renewable Energy Jobs Reach 10.3 Million Worldwide in 2017. 2017. Available online: https://irena.org/newsroom/pressreleases/2018/may/renewable-energy-jobs-reach-10-million-worldwide-in-2017 (accessed on 10 August 2021).
- Ren, L.; Zhou, S.; Peng, T.; Ou, X. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China. Renew. Sustain. Energy Rev. 2021, 143, 110846. [Google Scholar] [CrossRef]
- Datta, A.; Krishnamoorti, R. Opportunities for a low carbon transition-deploying carbon capture, utilization, and storage in Northeast India. Front. Energy Res. 2019, 7, 12. [Google Scholar] [CrossRef]
- Su, C.; Urban, F. Circular economy for clean energy transitions: A new opportunity under the COVID-19 pandemic. Appl. Energy 2021, 289, 116666. [Google Scholar] [CrossRef]
- Oberschelp, C.; Pfister, S.; Raptis, C.E.; Hellweg, S. Global emission hotspots of coal power generation. Nat. Sustain. 2019, 2, 113–121. [Google Scholar] [CrossRef]
- Mahat, T.J.; Bláha, L.; Uprety, B.; Bittner, M. Climate finance and green growth: Reconsidering climate-related institutions, investments, and priorities in Nepal. Environ. Sci. Eur. 2019, 31, 1–13. [Google Scholar] [CrossRef]
- Delponte, I.; Schenone, C. RES Implementation in urban areas: An updated overview. Sustainability 2020, 12, 382. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhang, Y.; Lu, W.; Zhao, M.; Zhu, M. Identification of priority conservation areas for protected rivers based on ecosystem integrity and authenticity: A case study of the Qingzhu River, Southwest China. Sustainability 2020, 13, 323. [Google Scholar] [CrossRef]
- Khojasteh, D.; Khojasteh, D.; Kamali, R.; Beyene, A.; Iglesias, G. Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy. Renew. Sustain. Energy Rev. 2018, 81, 2992–3005. [Google Scholar] [CrossRef]
- Ghouchani, M.; Taji, M.; Cheheltani, A.S.; Chehr, M.S. Developing a perspective on the use of renewable energy in Iran. Technol. Forecast. Soc. Chang. 2021, 172, 121049. [Google Scholar] [CrossRef]
- MEI. Iran’s Renewable Energy Potential. 2016. Available online: https://www.mei.edu/publications/irans-renewable-energy-potential (accessed on 12 August 2021).
- Elavarasan, R.M.; Afridhis, S.; Vijayaraghavan, R.R.; Subramaniam, U.; Nurunnabi, M. SWOT analysis: A framework for comprehensive evaluation of drivers and barriers for renewable energy development in significant countries. Energy Rep. 2020, 6, 1838–1864. [Google Scholar] [CrossRef]
- Nunez, C. Renewable Energy Explained. 2019. Available online: https://www.nationalgeographic.com/environment/article/renewable-energy (accessed on 7 August 2021).
- Mostafaeipour, A.; Bidokhti, A.; Fakhrzad, M.-B.; Sadegheih, A.; Mehrjerdi, Y.Z. A new model for the use of renewable electricity to reduce carbon dioxide emissions. Energy 2022, 238, 121602. [Google Scholar] [CrossRef]
- Cossutta, M.; Foo, D.C.; Tan, R.R. Carbon emission pinch analysis (CEPA) for planning the decarbonization of the UK power sector. Sustain. Prod. Consum. 2021, 25, 259–270. [Google Scholar] [CrossRef]
- Lehtveer, M.; Fridahl, M. Managing variable renewables with biomass in the European electricity system: Emission targets and investment preferences. Energy 2020, 213, 118786. [Google Scholar] [CrossRef]
- Greco, A.; Gundabattini, E.; Gnanaraj, D.S.; Masselli, C. A comparative study on the performances of flat plate and evacuated tube collectors deployable in domestic solar water heating systems in different climate areas. Climate 2020, 8, 78. [Google Scholar] [CrossRef]
- Sæþórsdóttir, A.D.; Ólafsdóttir, R. Not in my back yard or not on my playground: Residents and tourists’ attitudes towards wind turbines in Icelandic landscapes. Energy Sustain. Dev. 2020, 54, 127–138. [Google Scholar] [CrossRef]
- NCSL. State Renewable Portfolio Standards and Goals. 2021. Available online: https://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx (accessed on 12 August 2021).
- Hoang, A.T.; Nižetić, S.; Olcer, A.I.; Ong, H.C.; Chen, W.-H.; Chong, C.T.; Thomas, S.; Bandh, S.A.; Nguyen, X.P. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 2021, 154, 112322. [Google Scholar] [CrossRef] [PubMed]
- Bielecki, S.; Skoczkowski, T.; Sobczak, L.; Buchoski, J.; Maciąg, Ł.; Dukat, P. Impact of the lockdown during the COVID-19 pandemic on electricity use by residential users. Energies 2021, 14, 980. [Google Scholar] [CrossRef]
- Mah, D.N.-Y.; Cheung, D.M.-W.; Leung, M.K.; Wang, M.Y.; Wong, M.W.-M.; Lo, K.; Cheung, A.T. Policy mixes and the policy learning process of energy transitions: Insights from the feed-in tariff policy and urban community solar in Hong Kong. Energy Policy 2021, 157, 112214. [Google Scholar] [CrossRef]
- Majid, M.A. Renewable energy for sustainable development in India: Current status, future prospects, challenges, employment, and investment opportunities. Energy Sustain. Soc. 2020, 10, 1–36. [Google Scholar] [CrossRef]
- Schoeneberger, C.A.; McMillan, C.A.; Kurup, P.; Akar, S.; Margolis, R.; Masanet, E. Solar for industrial process heat: A review of technologies, analysis approaches, and potential applications in the United States. Energy 2020, 206, 118083. [Google Scholar] [CrossRef]
- Stokes, L. Short Circuiting Policy: Interest Groups and the Battle over Clean Energy and Climate Policy in the American States; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Obeng-Darko, N.A. Why Ghana will not achieve its renewable energy target for electricity. Policy, legal and regulatory implications. Energy Policy 2019, 128, 75–83. [Google Scholar] [CrossRef]
- Deng, H.; Farah, P.D. China’s energy policies and strategies for climate change and energy security. J. World Energy Law Bus. 2020, 13, 141–156. [Google Scholar] [CrossRef]
- Khan, E.A.; Royhan, P.; Rahman, M.A.; Mostafa, A.; Rahman, M.; Rahman, M. the impact of enviropreneurial orientation on small firms’ business performance: The mediation of green marketing mix and eco-labeling strategies. Sustainability 2019, 12, 221. [Google Scholar] [CrossRef] [Green Version]
- Makholm, J.D. Decarbonization and the future of gas distributors. Clim. Energy 2021, 37, 15–19. [Google Scholar] [CrossRef]
- Ganowski, S.; Rowlands, I. Read all about it! Comparing media discourse on energy storage in Canada and the United Kingdom in a transition era. Energy Res. Soc. Sci. 2020, 70, 101709. [Google Scholar] [CrossRef]
- Čábelková, I.; Strielkowski, W.; Firsova, I.; Korovushkina, M. Public acceptance of renewable energy sources: A case study from the Czech Republic. Energies 2020, 13, 1742. [Google Scholar] [CrossRef] [Green Version]
- Genys, D.; Krikštolaitis, R. Clusterization of public perception of nuclear energy in relation to changing political priorities. Insights Reg. Dev. 2020, 2, 750–764. [Google Scholar] [CrossRef]
- Čábelková, I.; Strielkowski, W.; Streimikiene, D.; Cavallaro, F.; Streimikis, J. The social acceptance of nuclear fusion for decision making towards carbon free circular economy: Evidence from Czech Republic. Technol. Forecast. Soc. Chang. 2021, 163, 120477. [Google Scholar] [CrossRef]
- Bersano, A.; Segantin, S.; Falcone, N.; Panella, B.; Testoni, R. Evaluation of a potential reintroduction of nuclear energy in Italy to accelerate the energy transition. Electr. J. 2020, 33, 106813. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Schmid, P.; Stirling, A.; Walter, G.; MacKerron, G. Differences in carbon emissions reduction between countries pursuing renewable electricity versus nuclear power. Nat. Energy 2020, 5, 928–935. [Google Scholar] [CrossRef]
- C2ES. Renewable Energy. 2021. Available online: https://www.c2es.org/content/renewable-energy (accessed on 11 August 2021).
- Norouzi, N.; de Rubens, G.Z.; Choupanpiesheh, S.; Enevoldsen, P. When pandemics impact economies and climate change: Exploring the impacts of COVID-19 on oil and electricity demand in China. Energy Res. Soc. Sci. 2020, 68, 101654. [Google Scholar] [CrossRef]
- Irfan, M.; Hao, Y.; Ikram, M.; Wu, H.; Akram, R.; Rauf, A. Assessment of the public acceptance and utilization of renewable energy in Pakistan. Sustain. Prod. Consum. 2021, 27, 312–324. [Google Scholar] [CrossRef]
- Crowe, J.A.; Li, R. Is the just transition socially accepted? Energy history, place, and support for coal and solar in Illinois, Texas, and Vermont. Energy Res. Soc. Sci. 2020, 59, 101309. [Google Scholar] [CrossRef]
- Kashintseva, V.; Strielkowski, W.; Streimikis, J.; Veynbender, T. Consumer attitudes towards industrial CO2 capture and storage products and technologies. Energies 2018, 11, 2787. [Google Scholar] [CrossRef] [Green Version]
- Carley, S.; Konisky, D.M.; Atiq, Z.; Land, N. Energy infrastructure, NIMBYism, and public opinion: A systematic literature review of three decades of empirical survey literature. Environ. Res. Lett. 2020, 15, 093007. [Google Scholar] [CrossRef]
- Omri, A.; Belaïd, F. Does renewable energy modulate the negative effect of environmental issues on the socio-economic welfare? J. Environ. Manag. 2021, 278, 111483. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.S.; Mahdi, A.J.; Bilal, M.; Sohail, H.M.; Ali, N.; Iqbal, H.M. Environmental impact and pollution-related challenges of renewable wind energy paradigm—A review. Sci. Total Environ. 2019, 683, 436–444. [Google Scholar] [CrossRef]
- Rana, R.L.; Lombardi, M.; Giungato, P.; Tricase, C. Trends in scientific literature on energy return ratio of renewable energy sources for supporting policymakers. Adm. Sci. 2020, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, A.K.D.S.; Barni, G.D.A.C.; Moro, M.F.; Bornia, A.C.; Kupek, E.; Fernandes, L. Hierarchical modeling of the 50 largest economies to verify the impact of GDP, population and renewable energy generation in CO2 emissions. Sustain. Prod. Consum. 2020, 22, 58–67. [Google Scholar] [CrossRef]
- Tasneem, Z.; Al Noman, A.; Das, S.K.; Saha, D.K.; Islam, R.; Ali, F.; Badal, F.R.; Ahamed, H.; Moyeen, S.I.; Alam, F. An analytical review on the evaluation of wind resource and wind turbine for urban application: Prospect and challenges. Dev. Built Environ. 2020, 4, 100033. [Google Scholar] [CrossRef]
- Tvaronavičienė, M.; Plėta, T.; Della Casa, S.; Latvys, J. Cyber security management of critical energy infrastructure in national cybersecurity strategies: Cases of USA, UK, France, Estonia and Lithuania. Insights Reg. Dev. 2020, 2, 802–813. [Google Scholar] [CrossRef]
- Dafalla, Y.; Liu, B.; Hahn, D.A.; Wu, H.; Ahmadi, R.; Bardas, A.G. Prosumer Nanogrids: A cybersecurity assessment. IEEE Access 2020, 8, 131150–131164. [Google Scholar] [CrossRef]
- Plėta, T.; Tvaronavičienė, M.; Della Casa, S. Cyber effect and security management aspects in critical energy infrastructures. Insights Reg. Dev. 2020, 2, 538–548. [Google Scholar] [CrossRef]
- Santika, W.G.; Anisuzzaman, M.; Bahri, P.A.; Shafiullah, G.; Rupf, G.V.; Urmee, T. From goals to joules: A quantitative approach of interlinkages between energy and the sustainable development goals. Energy Res. Soc. Sci. 2019, 50, 201–214. [Google Scholar] [CrossRef]
- Sperotto, F.; Tartaruga, I. The green side of industry: The drivers and the impacts of ECO-innovations in Brazil. Sustainability 2021, 13, 8065. [Google Scholar] [CrossRef]
- Masron, T.A.; Subramaniam, Y. Renewable energy and poverty–environment nexus in developing countries. GeoJournal 2021, 86, 303–315. [Google Scholar] [CrossRef]
- Uddin, R.; Shaikh, A.; Khan, H.; Shirazi, M.; Rashid, A.; Qazi, S. Renewable energy perspectives of Pakistan and Turkey: Current analysis and policy recommendations. Sustainability 2021, 13, 3349. [Google Scholar] [CrossRef]
- Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.-J.; Wilberforce, T.; Olabi, A. Environmental impacts of solar energy systems: A review. Sci. Total Environ. 2021, 754, 141989. [Google Scholar] [CrossRef] [PubMed]
- IEA. Net Zero by 2050. 2021. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 13 August 2021).
- Radavičius, T.; van der Heide, A.; Palitzsch, W.; Rommens, T.; Denafas, J.; Tvaronavičienė, M. Circular solar industry supply chain through product technological design changes. Insights Reg. Dev. 2021, 3, 10–30. [Google Scholar] [CrossRef]
- Worighi, I.; Maach, A.; Hafid, A.; Hegazy, O.; Van Mierlo, J. Integrating renewable energy in smart grid system: Architecture, virtualization and analysis. Sustain. Energy Grids Netw. 2019, 18, 100226. [Google Scholar] [CrossRef]
- Stokes, L.C.; Breetz, H. Politics in the U.S. energy transition: Case studies of solar, wind, biofuels and electric vehicles policy. Energy Policy 2018, 113, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Tareen, W.U.K.; Dilbar, M.T.; Farhan, M.; Nawaz, M.A.; Durrani, A.W.; Memon, K.A.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B.; Amir, M. Present status and potential of biomass energy in Pakistan based on existing and future renewable resources. Sustainability 2019, 12, 249. [Google Scholar] [CrossRef] [Green Version]
- Litvinenko, V. The role of hydrocarbons in the global energy agenda: The focus on liquefied natural gas. Resources 2020, 9, 59. [Google Scholar] [CrossRef]
- Sha, A.; Aiello, M. A novel strategy for optimising decentralised energy exchange for prosumers. Energies 2016, 9, 554. [Google Scholar] [CrossRef]
- Mehigan, L.; Deane, J.; O Gallachoir, B.; Bertsch, V. A review of the role of distributed generation (DG) in future electricity systems. Energy 2018, 163, 822–836. [Google Scholar] [CrossRef]
- Zebra, E.I.C.; van der Windt, H.J.; Nhumaio, G.; Faaij, A.P. A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renew. Sustain. Energy Rev. 2021, 144, 111036. [Google Scholar] [CrossRef]
- Balali, M.H.; Nouri, N.; Omrani, E.; Nasiri, A.; Otieno, W. An overview of the environmental, economic, and material developments of the solar and wind sources coupled with the energy storage systems. Int. J. Energy Res. 2017, 41, 1948–1962. [Google Scholar] [CrossRef]
- Khan, M.; Pervez, A.; Modibbo, U.; Chauhan, J.; Ali, I. Flexible fuzzy goal programming approach in optimal mix of power generation for socio-economic sustainability: A Case Study. Sustainability 2021, 13, 8256. [Google Scholar] [CrossRef]
- Al Naqbi, S.; Tsai, I.; Mezher, T. Market design for successful implementation of UAE 2050 energy strategy. Renew. Sustain. Energy Rev. 2019, 116, 109429. [Google Scholar] [CrossRef]
- Carley, S.; Davies, L.L.; Spence, D.B.; Zirogiannis, N. Empirical evaluation of the stringency and design of renewable portfolio standards. Nat. Energy 2018, 3, 754–763. [Google Scholar] [CrossRef]
- Bamisile, O.; Babatunde, A.; Adun, H.; Yimen, N.; Mukhtar, M.; Huang, Q.; Hu, W. Electrification and renewable energy nexus in developing countries; an overarching analysis of hydrogen production and electric vehicles integrality in renewable energy penetration. Energy Convers. Manag. 2021, 236, 114023. [Google Scholar] [CrossRef]
- Simpson, N.P.; Rabenold, C.J.; Sowman, M.; Shearing, C.D. Adoption rationales and effects of off-grid renewable energy access for African youth: A case study from Tanzania. Renew. Sustain. Energy Rev. 2021, 141, 110793. [Google Scholar] [CrossRef]
- Chapman, A.; Itaoka, K.; Farabi-Asl, H.; Fujii, Y.; Nakahara, M. Societal penetration of hydrogen into the future energy system: Impacts of policy, technology and carbon targets. Int. J. Hydrogen Energy 2020, 45, 3883–3898. [Google Scholar] [CrossRef]
- Klimenko, V.; Ratner, S.; Tereshin, A. Constraints imposed by key-material resources on renewable energy development. Renew. Sustain. Energy Rev. 2021, 144, 111011. [Google Scholar] [CrossRef]
- Prol, J.L.; Schill, W.-P. The economics of variable renewable energy and electricity storage. Annu. Rev. Resour. Econ. 2021, 13, 443–467. [Google Scholar] [CrossRef]
- Zohrabian, A.; Sanders, K.T. Emitting less without curbing usage? Exploring greenhouse gas mitigation strategies in the water industry through load shifting. Appl. Energy 2021, 298, 117194. [Google Scholar] [CrossRef]
- Dowling, J.A.; Rinaldi, K.Z.; Ruggles, T.H.; Davis, S.J.; Yuan, M.; Tong, F.; Lewis, N.S.; Caldeira, K. Role of long-duration energy storage in variable renewable electricity systems. Joule 2020, 4, 1907–1928. [Google Scholar] [CrossRef]
- Jayachandran, M.; Reddy, C.; Padmanaban, S.; Milyani, A.H. Operational planning steps in smart electric power delivery system. Sci. Rep. 2021, 11, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, C. Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: A review. J. Power Sources 2021, 493, 229445. [Google Scholar] [CrossRef]
- Negro, E.; Delpeuch, A.B.; Vezzù, K.; Nawn, G.; Bertasi, F.; Ansaldo, A.; Pellegrini, V.; Dembinska, B.; Zoladek, S.; Miecznikowski, K.; et al. Toward Pt-free anion-exchange membrane fuel cells: Fe–Sn carbon nitride–graphene core–shell electrocatalysts for the oxygen reduction reaction. Chem. Mater. 2018, 30, 2651–2659. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Díez, E.; Ventosa, E.; Guarnieri, M.; Trovò, A.; Flox, C.; Marcilla, R.; Soavi, F.; Mazur, P.; Aranzabe, E.; Ferret, R. Redox flow batteries: Status and perspective towards sustainable stationary energy storage. J. Power Sources 2021, 481, 228804. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Nale, A.; Pagot, G.; Vezzù, K.; Zawodzinski, T.A.; Meda, L.; Gambaro, C.; Di Noto, V. An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane. Electrochim. Acta 2021, 378, 138133. [Google Scholar] [CrossRef]
- Emmanuel, M.; Doubleday, K.; Cakir, B.; Marković, M.; Hodge, B.-M. A review of power system planning and operational models for flexibility assessment in high solar energy penetration scenarios. Sol. Energy 2020, 210, 169–180. [Google Scholar] [CrossRef]
- Eyre, N.; Darby, S.J.; Grünewald, P.; McKenna, E.; Ford, R. Reaching a 1.5 °C target: Socio-technical challenges for a rapid transition to low-carbon electricity systems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20160462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, P.; Lazarus, M.; Piggot, G. Limiting fossil fuel production as the next big step in climate policy. Nat. Clim. Chang. 2018, 8, 1037–1043. [Google Scholar] [CrossRef]
- Tun, M.M.; Juchelkova, D.; Win, M.M.; Thu, A.M.; Puchor, T. Biomass energy: An overview of biomass sources, energy potential, and management in southeast asian countries. Resources 2019, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Hsu, S.-C.; Zheng, S.; Chen, J.-H.; Li, X.I. Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy. Appl. Energy 2020, 274, 115287. [Google Scholar] [CrossRef]
Sources | Economic Factors | Legal and Policy Factors | Social Acceptance Factors | Adverse Impacts on Environment |
---|---|---|---|---|
Khojasteh et al. (2018); Datta and Krishnamoorti (2019); Oberschelp et al. (2019); IRENA (2020); Maniatis et al. (2021); Ren et al. (2021); Ghouchani et al. (2021); Li et al. (2021) | x | x | ||
Mahat et al. (2019); Brauers and Oei (2020); Delponte and Schenone (2020); Su and Urban (2021) | x | x | x | |
Sæþórsdóttir and Ólafsdóttir (2020); Greco et al. (2020); Majid et al. (2020); Khan et al. (2020); Stokes (2020): Cossutta et al. (2021); Bielecki et al. (2021); Huang et al. (2021) | x | |||
Obeng-Darko (2019); Elavarasan et al. (2020); Lehtveer and Fridahl (2020); Deng and Farah (2020); Schoeneberger et al. (2020); Mah et al. (2021); Mostafaeipour et al. (2021); | x | x | ||
Čábelková et al. (2020); Genys and Krikštolaitis (2020); Ganowski and Rowlands (2020); Crowe and Li (2020); Makholm (2021); Irfan et al. (2021) | x | |||
Kashintseva et al. (2018); Bersano et al. (2020); Sovacool et al. (2020); Carley et al. (2020); Norouzi et al. (2020); Čábelková et al. (2021) | x | x | ||
Nazir et al. (2019); Santika et al. (2019); Rana et al. (2020); Dafalla et al. (2020); Plėta et al. (2020); Tasneem et al. (2020); Tvaronavičienė et al. (2020); Omri and Belaïd (2021); Sperotto and Tartaruga (2021); Masron and Subramaniam (2021); Uddin et al. (2021); Rabaia et al. (2021) | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strielkowski, W.; Civín, L.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies 2021, 14, 8240. https://doi.org/10.3390/en14248240
Strielkowski W, Civín L, Tarkhanova E, Tvaronavičienė M, Petrenko Y. Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies. 2021; 14(24):8240. https://doi.org/10.3390/en14248240
Chicago/Turabian StyleStrielkowski, Wadim, Lubomír Civín, Elena Tarkhanova, Manuela Tvaronavičienė, and Yelena Petrenko. 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review" Energies 14, no. 24: 8240. https://doi.org/10.3390/en14248240