Experimental Study and Modeling of the Effect of ESDD/NSDD on AC Flashover of SiR Outdoor Insulators
Abstract
:1. Introduction
2. Experimental Arrangements
2.1. Insulator Preparation
2.2. Experimental Setup
2.3. Artificial Pollution of Insulators
2.4. Flashover Ramp Test Method
3. Experimental Results, Analysis, and Discussion
3.1. Flashover Test Results
3.2. Effect of NSDD on the Leakage Resistance and Surface Resistivity
3.3. Modeling
3.4. Estimation of Discharge Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haddad, A.; Warne, D. Advanced in High Voltage Engineering; IET Edition: London, UK, 2004. [Google Scholar]
- Slama, M.E.; Hadi, H.; Flazi, S. Study on Influence of the Non-Uniformity of Pollution at the Surface of HVAC Lines Insulators on Flashover Probability. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena CEIDP 2007, Vancouver, BC, Canada, 14–17 October 2007; pp. 562–566. [Google Scholar]
- Looms, J.S.T. Insulators for High Voltages; Peter Pergrinus Ltd.: London, UK, 1988; no. 7. [Google Scholar]
- Farzaneh, M.; Farokhi, S.; Chisholm, W.A. Electrical Design of Overhead Power Transmission Lines, 1st ed.; McGraw-Hill Professional: New York, NY, USA, 2013. [Google Scholar]
- Rizk, F.M.; Rezazada, A.Q. Modeling of Altitude Effects on Ac Flashover of Polluted High Voltage Insulators. IEEE Trans. Power Deliv. 1997, 12, 810–822. [Google Scholar] [CrossRef]
- Saleem, M.Z.; Akbar, M. Review of the Performance of High-Voltage Composite Insulators. Polymers 2022, 14, 431. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Jiang, X.; Han, X.; Zhang, Z.; Hu, J. Influence of pollution chemical components on AC flashover performance of various types of insulators. High Volt. 2019, 4, 105–112. [Google Scholar] [CrossRef]
- Slama, M.E.; Beroual, A.; Hadi, H. Influence of Pollution Constituents on DC Flashover of High Voltage Insulators. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 401–408. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. Selection and Dimensioning of High-Voltage Insulators Intended for Use in Polluted Conditions—Part 1. IEC Technical Specification IEC/TS 60815-1; IEC: Geneva, Switzerland, 2008. [Google Scholar]
- IEC 60507:1991. Artificial Pollution Tests on High-Voltage Insulators to Be Used on A.C. Systems; IEC: Geneva, Switzerland, 2014. [Google Scholar]
- Zhang, D.; Zhang, Z.; Jiang, X.; Yang, Z.; Zhao, J.; Li, Y. Study on Insulator Flashover Voltage Gradient Correction Considering Soluble Pollution Constituents. Energies 2016, 9, 954. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, D.; Jiang, X.; Liu, X. Effects of pollution materials on the AC flashover performance of suspension insulators. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1000–1008. [Google Scholar] [CrossRef]
- Ramos, N.G.; Campillo RM, T.; Naito, K. A study on the characteristics of various conductive contaminants accumulated on high voltage insulators. IEEE Trans. Power Deliv. 1993, 8, 1842–1850. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Z.; Jiang, X.; Yang, Z.; Liu, Y. Study on the Flashover Performance of Various Types of Insulators Polluted by Nitrates. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 167–174. [Google Scholar] [CrossRef]
- Akbar, M.; Zedan, F. Performances of HV transmission line insulators on desert conditions—Part 3: Pollution measurement at a coastal site in the eastern region of Saudi Arabia. IEEE Trans. Power Deliv. 1991, 6, 429–438. [Google Scholar] [CrossRef]
- Matsuoka, R.; Kondo, K.; Nako, K.; Ishii, M. Influence of Non-soluble Contaminants on the Flashover Voltages of Artificially Contaminated Insulators. IEEE Trans. Power Deliv. 1996, 11, 420–430. [Google Scholar] [CrossRef]
- Lshii, M.; Komatsubara, M.; Matsuoka, R.; Matsumoto, T.; Kurokawa, M.; Naito, K. Behavior of Insoluble Materials in Artificial Contamination Tests. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 438. [Google Scholar]
- Flazi, M.E.S.S.; Hadi, H.; Flazi, S.; Tchouar, N. Belakadi Etude du dépôt de pollution responsable du contournement des isolateurs des lignes aériennes du réseau électrique THT national. Rev. Sci. Technol. B 2007, 43–50. (In French). Available online: https://www.asjp.cerist.dz/en/downArticle/407/0/25/58337 (accessed on 11 April 2022).
- Jiang, X.; Yuan, J.; Zhang, Z.; Hu, J.; Sun, C. Study on AC Artificial-Contaminated Flashover Performance of Various Types of Insulators. IEEE Trans. Power Deliv. 2007, 22, 2567–2574. [Google Scholar] [CrossRef]
- Sundhar, S. Influence of non-soluble contaminants on flashover performance of artificially contaminated polymer insulators. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena—(CEIDP’94), Arlington, TX, USA, 23–26 October 1994; pp. 657–662. [Google Scholar]
- Papailiou, K.O.; Schmuck, F. Silicone Composite Insulators: Materials, Design, Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Swift, D.A.; Spellman, C.; Haddad, A. Hydrophobicity Transfer from Silicone Rubber to Adhering Pollutants and its Effect on Insulator Performance. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 820–829. [Google Scholar] [CrossRef]
- Obenaus, F. Fremdschichtüberschlag und Kriechweglänge. Deutsch. Electrotech. 1958, 4, 135–136. [Google Scholar]
- Rizk, F.A.M. Mathematical Models for Pollution Flashover. Electra 1981, 78, 71–103. [Google Scholar]
- Hampton, B.F. Flashover Mechanism of Polluted Insulation. Proc. Inst. Electr. Eng. 1964, 111, 985–990. [Google Scholar] [CrossRef]
- Wilkins, R. Flashover Voltage of HV Insulators with Uniform Surface Pollution Films. Proc. Inst. Electr. Eng. 1969, 116, 457–465. [Google Scholar] [CrossRef]
- Slama, M.E.; Beroual, A.; Hadi, H. Analytical Computation of Discharge Characteristic Constants and Critical Parameters of Flashover of Polluted Insulators. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1764–1771. [Google Scholar] [CrossRef]
- Charalampidis, P.; Albano, M.; Griffiths, H.; Haddad, A.; Waters, R.T. Silicone rubber insulators for polluted environments, part 1: Enhanced artificial pollution tests. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 740–748. [Google Scholar] [CrossRef]
- Albano, M.; Charalampidis, P.; Griffiths, H.; Haddad, A.; Waters, R.T. Silicone rubber insulators for polluted environents, part 2: Textured insulators. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 749–757. [Google Scholar] [CrossRef]
- Krzma, A.; Albano, M.; Haddad, A. Comparative characterization of conventional and textured 11 kV insulators using the rotating wheel dip test. IET High Volt. 2020, 5, 739–746. [Google Scholar] [CrossRef]
- Slama, M.E.A.; Albano, M.; Haddad, A.M.; Waters, R.T.; Cwikowski, O.; Iddrissu, I.; Knapper, J.; Scopes, O. Monitoring of dry bands and discharge activities at the surface of textured insulators with AC clean fog test conditions. Energies 2021, 14, 2914. [Google Scholar] [CrossRef]
- Albano, M.; Waters, R.T.; Charalampidis, P.; Griffiths, H.; Haddad, A. Infrared Analysis of Dry-band FOV of Silicone Rubber Insulators. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 304–310. [Google Scholar] [CrossRef]
- Working Group C4.303. Artificial Pollution Test for Polymer Insulators. Results of Round Robin Test; Cigré: Paris, France, 2013. [Google Scholar]
- Slama, M.E.A.; Hadi, H.; Flazi, S. Investigation on influence of salts mixture on the determination of flashover discharge constant. Part I: A preliminary study. In Proceedings of the Annual Report—Conference on Electrical Insulation and Dielectric Phenomena, Quebec City, QC, Canada, 26–29 October 2008; pp. 674–677. [Google Scholar]
Property | Inspection Method | x-A/B |
---|---|---|
Permittivity | IEC 60250 | 2.9 |
Dielectric strength (kV/mm) | IEC 60243 | 23 |
Tracking resistance | IEC 60587 | 1 A 3.5 |
Dissipation factor | IEC 60250 | |
Tensile strength (N/mm2) | ISO 37 | 6.50 |
Hardness shore | ISO 868 | 30 |
Tear strength (N/mm) | ASTM D 624 B | 20 |
Elongation at break | ISO 37 | 500 |
Volume resistivity | IEC 60093 | 1015 |
Parameters | Dimensions (mm) |
---|---|
Creepage distance | 375 |
Fitting separation | 175 |
Shed diameter | 90 |
Shed separation | 46 |
Trunk diameter | 28 |
Inner core diameter | 18 |
Form factor | 2.7 |
NSDD | α | β |
---|---|---|
0.11 | 35.308 | −0.211 |
0.23 | 30.598 | −0.239 |
0.52 | 20.992 | −0.262 |
ESDD (mg/cm2) | R_minNSDD1 (MΩ) | R_minNSDD2 (MΩ) | R_minNSDD3 (MΩ) |
---|---|---|---|
0.12 | 1.62 | 1.03 | 0.73 |
0.38 | 1.57 | 0.88 | 0.57 |
1.00 | 1.20 | 0.60 | 0.20 |
ESDD (mg/cm2) | Average Minimum Surface Resistivity (MΩ) | ||
---|---|---|---|
NSDD1 (mg/cm2) | NSDD2 (mg/cm2) | NSDD3 (mg/cm2) | |
0.12 | 4.07 | 2.59 | 2.10 |
0.38 | 3.60 | 2.22 | 1.30 |
1.00 | 3.04 | 1.52 | 0.40 |
NSDD | N | n |
---|---|---|
0.11 | 149.45 | 0.214 |
0.23 | 133.60 | 0.211 |
0.52 | 83.61 | 0.173 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slama, M.E.A.; Krzma, A.; Albano, M.; Haddad, A.M. Experimental Study and Modeling of the Effect of ESDD/NSDD on AC Flashover of SiR Outdoor Insulators. Energies 2022, 15, 3782. https://doi.org/10.3390/en15103782
Slama MEA, Krzma A, Albano M, Haddad AM. Experimental Study and Modeling of the Effect of ESDD/NSDD on AC Flashover of SiR Outdoor Insulators. Energies. 2022; 15(10):3782. https://doi.org/10.3390/en15103782
Chicago/Turabian StyleSlama, Mohammed El Amine, Adnan Krzma, Maurizio Albano, and Abderrahmane Manu Haddad. 2022. "Experimental Study and Modeling of the Effect of ESDD/NSDD on AC Flashover of SiR Outdoor Insulators" Energies 15, no. 10: 3782. https://doi.org/10.3390/en15103782