Cryptic Risks to Forest Biosecurity Associated with the Global Movement of Commercial Seed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. DNA Extraction and Sequencing
2.3. Bioinformatics and Analysis of Sequence Data
3. Results
3.1. Structure of the Fungal Communities of Pinus Species
3.2. Structure of the Plant Pathogen Community in Pinus Species Seed
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roques, A. Alien forest insects in a warmer world and a globalised economy: Impacts of changes in trade, tourism and climate on forest biosecurity. N. Z. J. For. Sci. 2010, 40, 77–94. [Google Scholar]
- Jimu, L.; Kemler, M.; Wingfield, M.J.; Mwenje, E.; Roux, J. The Eucalyptus stem canker pathogen Teratosphaeria zuluensis detected in seed samples. Forestry 2016, 89, 316–324. [Google Scholar] [CrossRef]
- Jaynes, R.A.; DePalma, N.K. Natural infection of nuts of Castanea dentata by Endothia parasitica. Phytopathology 1984, 74, 296–299. [Google Scholar] [CrossRef]
- Santini, A.; Ghelardini, L.; Pace, C.; Desprez-Loustau, M.L.; Capretti, P.; Chandelier, A.; Cech, T.; Chira, D.; Diamandis, S.; Gaitniekis, T.; et al. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 2013, 197, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Woods, T.A.D.; Farris, S.H.; Sutherland, J.R. Penetration of Sitka spruce seeds by the pathogenic fungus Caloscypha fulgens. Can. J. Bot. 1982, 60, 544–548. [Google Scholar] [CrossRef]
- Cilliers, A.J.; Swart, W.J.; Wingfield, M.J. The occurrence of Lasiodiplodia theobromae on Pinus elliottii seeds in South Africa. Seed Sc. Technol. 1995, 23, 851–860. [Google Scholar]
- Maciel, C.G.; Muniz, M.F.B.; Mezzomo, R.; Reiniger, L.R.S. Lasiodiplodia theobromae associated with seeds of Pinus spp. originated from the northwest of Rio Grande do Sul, Brazil. Sci. For./For. Sci. 2015, 43, 639–646. [Google Scholar]
- Fraedrich, S.W.; Miller, T.; Zarnoch, S.J. Factors affecting the incidence of black seed rot in slash pine. Can. J. For. Res. 1994, 24, 1717–1725. [Google Scholar] [CrossRef]
- Adamson, K.; Klavina, D.; Drenkhan, R.; Gaitnieks, T.; Hanso, M. Diplodia sapinea is colonizing the native Scots pine (Pinus sylvestris) in the northern Baltics. Eur. J. Plant Pathol. 2015, 143, 343–350. [Google Scholar] [CrossRef]
- Decourcelle, T.; Piou, D.; Desprez–Loustau, M.L. Detection of Diplodia sapinea in Corsican pine seeds. Plant Pathol. 2015, 64, 442–449. [Google Scholar] [CrossRef]
- Oliva, J.; Boberg, J.; Stenlid, J. First report of Sphaeropsis sapinea on Scots pine (Pinus sylvestris) and Austrian pine (P. nigra) in Sweden. New Dis. Rep. 2013, 27, 23. [Google Scholar] [CrossRef]
- Viljoen, A.; Wingfield, M.J.; Maras, W.F.O. First report of Fusarium subglutians f. sp. pini on pine seedlings in South Africa. Plant Dis. 1994, 78, 309–312. [Google Scholar]
- Wingfield, M.J.; Hammerbacher, A.; Ganley, R.J.; Steenkamp, E.T.; Gordon, T.R.; Wingfield, B.D.; Coutinho, T.A. Pitch canker caused by Fusarium circinatum—A growing threat to pine plantations and forests worldwide. Australas. Plant Pathol. 2008, 37, 319–334. [Google Scholar] [CrossRef]
- Dwinell, L.D. Contamination of Pinus radiata Seeds in California by Fusarium circinatum. In Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, San Diego, CA, USA, 1–4 November 1999; pp. 1–3. [Google Scholar]
- Storer, A.J.; Gordon, T.R.; Clarck, S.L. Association of the pitch canker fungus, Fusarium subglutinans f. sp. pini with Monterey pine seeds, and seedlings in California. Plant Pathol. 1998, 47, 649–656. [Google Scholar]
- EFSA, P.L.H. Panel (EFSA Panel on Plant Health). PLH Guidance on a harmonised framework for pest risk assessment and the identification and evaluation of pest risk management options by EFSA. EFSA J. 2010, 8, 1495. [Google Scholar]
- Gordon, T.R.; Kirkpatrick, S.C.; Aegerter, B.J.; Wood, D.L.; Storer, A.J. Susceptibility of Douglas fir (Pseudotsuga menziesii) to pitch canker, caused by Gibberella circinata (anamorph = Fusarium circinatum). Plant Pathol. 2006, 55, 231–237. [Google Scholar] [CrossRef]
- Vettraino, A.M.; Potting, R.; Raposo, R. EU legislation on forest plant health: An overview with a focus on Fusarium circinatum. Forests 2018, 9, 568. [Google Scholar] [CrossRef]
- Burgess, T.; Wingfield, M.J. Quarantine is important in restricting the spread of exotic seed-borne tree pathogens in the southern hemisphere. Int. For. Rev. 2002, 4, 56–65. [Google Scholar]
- Bentele, M.; Morgenstern, K.; Krabel, D. Lophodermium seditiosum Minter, Staley & Millar seed-borne on Pinus sylvestris. J. For. Landsc. Res. 2014, 1, 1–8. [Google Scholar]
- Morgenstern, K.; Döring, M.; Krabel, D. Rhabdocline needle cast—Most recent findings of the occurrence of Rhabdocline pseudotsugae in Douglas-fir seeds. Botany 2014, 92, 465–469. [Google Scholar] [CrossRef]
- Morgenstern, K.; Döring, M.; Krabel, D. Rhabdocline needle cast—Investigations on various Douglas fir tissue types. Eur. J. Plant Pathol. 2013, 137, 495–504. [Google Scholar] [CrossRef]
- Hibbett, D.S.; Ohman, A.; Kirk, P.M. Fungal ecology catches fire. New Phytol. 2009, 184, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Hibbett, D.; Abarenkov, K.; Kõljalg, U.; Öpik, M.; Chai, B.; Cole, J.; Wang, Q.; Crous, P.; Robert, V.; Helgason, T.; et al. Sequence-based classification and identification of Fungi. Mycologia 2016, 108, 1049–1068. [Google Scholar]
- Hawksworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Anslan, S.; Bahram, M.; Wurzbacher, C.; Baldrian, P.; Tedersoo, L. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019, 17, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, E.D.; Duceppe, M.O.; Berube, J.A.; Kimoto, T.; Lemieux, C.; Bilodeau, G.J. Screening for exotic forest pathogens to increase survey capacity using metagenomics. Phytopathology 2018, 108, 1509–1521. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, É.D.; Kimoto, T.; Bérubé, J.A.; Bilodeau, G.J. Next-generation sequencing to investigate existing and new insect associations with phytopathogenic fungal propagules. J. Fungi. 2019, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Berubé, J.A.; Gagné, P.N.; Ponchart, J.P.; Tremblay, É.D.; Bilodeau, G.J. Detection of Diplodia corticola spores in Ontario and Québec based on High Throughput Sequencing (HTS) methods. Can. J. Plant Pathol. 2018, 40, 378–386. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Malacrinò, A.; Wisniewski, M.; Cacciola, S.O.; Schena, L. Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies. Biol. Cont. 2018, 120, 1–10. [Google Scholar] [CrossRef]
- Bulman, S.R.; McDougal, R.L.; Hill, K.; Lear, G. Opportunities and limitations for DNA metabarcoding in Australasian plant-pathogen biosecurity. Australas. Plant Pathol. 2018, 47, 467–474. [Google Scholar] [CrossRef]
- Tedersoo, L.; Drenkhan, R.; Anslan, S.; Morales-Rodriguez, C.; Cleary, M. High-throughput identification and diagnostics of pathogens and pests: Overview and practical recommendations. Mol. Ecol. Resour. 2019, 19, 47–76. [Google Scholar] [CrossRef]
- Adams, I.P.; Fox, A.; Boonham, N.; Massart, S.; De Jonghe, K. The impact of high throughput sequencing on plant health diagnostics. Eur. J. Plant Pathol. 2018, 152, 909–919. [Google Scholar] [CrossRef]
- Vettraino, A.; Roques, A.; Yart, A.; Fan, J.T.; Sun, J.H.; Vannini, A. Sentinel Trees as a Tool to Forecast Invasions of Alien Plant Pathogens. PLoS ONE 2015, 10, e0120571. [Google Scholar] [CrossRef]
- Vettraino, A.M.; Li, H.M.; Eschen, R.; Morales-Rodriguez, C.; Vannini, A. The sentinel tree nursery as an early warning system for pathway risk assessment: Fungal pathogens associated with Chinese woody plants commonly shipped to Europe. PLoS ONE 2017, 12, e0188800. [Google Scholar] [CrossRef]
- Eschen, R.; Douma, J.C.; Grégoire, J.C.; Mayer, F.; Rigaux, L.; Potting, R.P.J. A risk categorisation and analysis of the geographic and temporal dynamics of the European import of plants for planting. Biol. Invasions. 2017, 19, 3243–3257. [Google Scholar] [CrossRef]
- Vega, D.; Gally, M.E.; Romero, A.M.; Poggio, S.L. Functional groups of plant pathogens in agroecosystems: A review. Eur. J. Plant Pathol. 2019, 153, 695–713. [Google Scholar] [CrossRef]
- Auger-Rozenberg, M.A.; Roques, A. Seed wasp invasions promoted by unregulated seed trade affect vegetal and animal biodiversity. Integr. Zool 2012, 7, 228–246. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylonetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Ihrmark, K.; Bödeker, I.T.M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K.E.; et al. New primers to amplify the fungal ITS2 region—Evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Oksanen, F.G.B.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; et al. Community Ecology Package. R Package. 2016. Available online: https://CRAN.R-project.org/package=vegan (accessed on 23 July 2018).
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Felsenstein, J.P. Phylogeny inference package (version 32). Cladistics 1989, 5, 164–166. [Google Scholar]
- Page RDM. TreeView version 166 Glasgow: University of Glasgow. 2001. Available online: http://taxonomy.zoology.gla.ac.uk/ROD/treeview.html (accessed on 23 July 2018).
- Farr, D.F.; Rossman, A.Y. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Available online: https://nt.ars-grin.gov/fungaldatabases/ (accessed on 29 April 2019).
- Anderson, R.L. Checklist of micro-organisms associated with tree seeds in the world. Gen. Tech. Rep. 1986, 39, 34. [Google Scholar]
- Mittal, R.K.; Wang, B.S.P. Fungi associated with seeds of eastern white pine and white spruce during cone processing and seed extraction. Can. J. For. Res. 1987, 17, 1026–1034. [Google Scholar] [CrossRef]
- Mittal, R.K.; Anderson, R.L.; Mathur, S.B. Microorganisms Associated with Tree Seeds: World Checklist 1990; Forestry Canada, Petawawa National Forestry Institute: Chalk River, ON, Canada, 1990; 70p. [Google Scholar]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Chehri, K.; Salleh, B.; Zakaria, L. Morphological and phylogenetic analysis of Fusarium solani species complex in Malaysia. Microb. Ecol. 2014, 69, 457–471. [Google Scholar] [CrossRef]
- Udayanga, D.; Castlebury, L.A.; Rossman, A.Y.; Chukeatirote, E.; Hyde, K.D. Insights into the genus Diaporthe: Phylogenetic species delimitation in the D. eres species complex. Fungal Divers. 2014, 67, 203–229. [Google Scholar] [CrossRef]
- Karlsson, I.; Edel-Hermann, V.; Gautheron, N.; Durling, M.B.; Kolseth, A.K.; Steinberg, C.; Persson, P.; Friberg, H. Genus-specific primers for study of Fusarium communities in field samples. Appl. Environ. Microbiol. 2016, 82, 491–501. [Google Scholar] [CrossRef]
- Funk, A. Foliar Fungi of Western Trees; Agriculture Canada, Ministry of State for Forestry, Pacific forest Research Centre: Victoria, BC, Canada, 1985; 159p.
- Thomsen, I.M. Current season needle necrosis (CSNN) in Denmark Working Papers. In Proceedings of the 8th International Christmas Tree Research and Extension Conference, Bogense, Denmark, 12–18 August 2007; Thomsen, I.M., Rasmussen, H.N., Sørensen, J.M., Eds.; Forest & Landscape Denmark: Hørsholm, Denmark, 2008; pp. 88–91. [Google Scholar]
- Talgø, V.; Chastagner, G.A.; Thomsen, I.M.; Cech, T.; Lange, K.; Riley, K.; Perny, B.; Klemsdal, S.S.; Stensvand, A. Sydowia polyspora associated with current season needle necrosis (CSNN) on true fir (Abies spp.). Fungal Biol. 2010, 114, 545–554. [Google Scholar] [CrossRef]
- Chastagner, G.A.; Staley, J.M.; Riley, K.L. Current season needle necrosis: A needle disorder of unknown etiology on noble and grand fir Christmas trees in the Pacific Northwest. In Recent Research on Foliage Diseases, Conference Proceedings; Merrill, W., Ostry, M.E., Eds.; General Technical Reports; USDA Forest Service: Washington, DC, USA, 1990; pp. 38–42. [Google Scholar]
- Chastagner, G.A.; Riley, K. Diseases that limit the production of noble fir Christmas trees in the Pacific Northwest. Skov & Landskab Report No. 7. In Improvements in Christmas Tree and Greenery Quality; Christensen, C.J., Ed.; Danish Center for Forest, Landscape and Planning: Horsholm, Denmark, 2000; pp. 13–21. [Google Scholar]
- Ridout, M.; Newcombe, G. Sydowia polyspora is both a foliar endophyte and a preemergent seed pathogen in Pinus ponderosa. Plant Dis. 2018, 102, 640–644. [Google Scholar] [CrossRef]
- Cram, M.M.; Fraedrich, S.W. Seed diseases and seedborne pathogens of North America. Tree Plant. Notes 2010, 53, 35–44. [Google Scholar]
- Rowan, S.J. Tip dieback in southern pine nurseries. Plant Dis. 1982, 66, 258–259. [Google Scholar] [CrossRef]
- Punithalingam, E. Plant Diseases Attributed to Botryodiplodia Theobromae Pat; J. Cramer: Vaduz, Lichtenstein, 1980. [Google Scholar]
- Rees, A.A. Infection of Pinus caribaea seed by Lasiodiplodia theobromae. Trans. Br. Mycol. Soc. 1988, 90, 321–324. [Google Scholar] [CrossRef]
- Rees, A.A.; Webber, J.F. Pathogenicity of Sphaeropsis sapinea to seed seedlings and saplings of some Central American pines. Trans. Br. Mycol. Soc. 1998, 91, 273–277. [Google Scholar] [CrossRef]
- Fraedrich, S.W.; Miller, T. Mycoflora associated with slash-pine seeds from cones collected at seed orchards and cone-processing facilities in the south-eastern USA. Eur. J. For. Pathol. 1995, 25, 73–82. [Google Scholar] [CrossRef]
- Sinclair, W.A.; Lyon, H.H. Diseases of Trees and Shrubs, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 2005. [Google Scholar]
- Stanosz, G.R.; Blodgett, J.T.; Smith, D.R.; Kruger, E.L. Water stress and Sphaeropsis sapinea as a latent pathogen of red pine seedlings. New Phytol. 2001, 149, 531–538. [Google Scholar] [CrossRef]
- Stanosz, G.R.; Smith, D.R.; Leisso, R. Diplodia shoot blight and asymptomatic persistence of Diplodia pinea on or in stems of jackpine nursery seedlings. For. Pathol. 2007, 37, 145–154. [Google Scholar] [CrossRef]
- Brodde, L.; Adamson, K.; Camarero, J.J.; Castaño, C.; Drenkhan, R.; Lehtijärvi, A.; Luchi, N.; Migliorini, D.; Sánchez-Miranda, Á.; Stenlid, J.; et al. Diplodia Tip Blight on Its Way to the North: Drivers of Disease Emergence in Northern Europe. Front. Plant Sci. 2019, 9, 1818. [Google Scholar] [CrossRef] [Green Version]
- Zakaullah, A.F. Mycoflora associated with blue pine seed. Pak. J. For. 2000, 50, 25–31. [Google Scholar]
- Bihon, W.; Slippers, B.; Burgess, T.; Wingfield, M.J.; Wingfield, B.D. Sources of Diplodia pinea endophytic infections in Pinus patula and P. radiata seedlings in South Africa. For. Pathol. 2011, 41, 370–375. [Google Scholar] [CrossRef]
- Dwinell, L.D. Association of the pitch canker fungus with cones and seeds of pines. In Current and Potential Impacts of Pitch Canker in Radiata Pine. Proc. CSIRO, Australia, 30 November–3 December 1998; Devey, M.E., Matheson, A.C., Gordon, T.R., Eds.; IMPACT Monterey Workshop: Monterey, CA, USA, 1999; pp. 35–39. [Google Scholar]
- Flowers, J.; Nuckles, E.; Hartman, J.; Vaillancourt, L. Latent infection of Austrian and Scots pine tissues by Sphaeropsis sapinea. Plant Dis. 2001, 85, 1107–1112. [Google Scholar] [CrossRef]
- Iturritxa, E.; Desprez-Loustau, M.L.; Garcia-Serna, I.; Quintana, E.; Mesanza, N.; Atkiens, J. Effect of alternative disinfection treatments against fungal canker in seeds of Pinus radiata. Seed Tech. 2011, 33, 88–110. [Google Scholar]
- Romero, G. Relationship of seed-borne pathogens to nursery and plantation diseases of eucalypts and pines in Uruguay. In Proceedings of the ISTA Tree Seed Pathology Meeting, Opocno, Czech Republic, 9–11 October 1996; Prochazkova, Z., Sutherland, J.R., Eds.; International Seed Testing Association: Zurich, Switzerland, 1997; pp. 82–85. [Google Scholar]
- Smith, H.; Wingfield, M.J.; Crous, P.W.; Coutinho, T.A. Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. S. Afr. J. Bot. 1996, 62, 86–88. [Google Scholar] [CrossRef]
- Smith, H.; Wingfied, M.J.; Coutinho, T.A. The role of latent Sphaeropsis sapinea infections in post-hail associated die-back of Pinus patula. For. Ecol. Manag. 2002, 164, 177–184. [Google Scholar] [CrossRef]
- Vujanovic, V.; St-Arnaud, M.; Neumann, P.J. Susceptibility of cones and seeds to fungal infection in a pine (Pinus spp.) collection. For. Pathol. 2000, 30, 305–320. [Google Scholar] [CrossRef]
- Stanosz, G.R.; Smith, D.R.; Guthmller, M.A.; Stanosz, J.C. Persistence of Sphaeropsis sapinea on or in asymptomatic shoots of red and jack pines. Mycologia 1997, 89, 525–530. [Google Scholar] [CrossRef]
- Slippers, B.; Wingfield, M.J. The Botryosphaeriaceae as endophytes and latent pathogens of trees: Identification, ecology and potential impact. Fungal Biol. Rev. 2007, 21, 90–106. [Google Scholar] [CrossRef]
- Smith, H.; Wingfield, M.J.; de Wet, J.; Coutinho, T.A. Genotypic Diversity of Sphaeropsis sapinea from South Africa and Northern Sumatra. Plant Dis. 2000, 84, 139–142. [Google Scholar] [CrossRef]
- Burgess, T.; Wingfield, B.D.; Wingfield, M.J. Comparison of genotypic diversity in native and introduced populations of Sphaeropsis sapinea isolated from Pinus radiata. Mycol. Res. 2001, 105, 133–1339. [Google Scholar] [CrossRef]
- Cleary, M.R.; Arhipova, N.; Gaitnieks, T.; Stenlid, J.; Vasaitis, R. Natural infection of Fraxinus excelsior seeds by Chalara fraxinea. For. Pathol. 2013, 43, 83–85. [Google Scholar]
- Marčiulynienė, D.; Davydenko, K.; Stenlid, J.; Shabunin, D.; Cleary, M. Fraxinus excelsior seed is not a probable introduction pathway for Hymenoscyphus fraxineus. For. Pathol. 2017, e12392. [Google Scholar] [CrossRef]
- Cordell, C.E.; Anderson, R.L.; Hoffard, W.H.; Landis, T.D.; Smith, R.S.J.; Toko, H.V. Forest Nursery Pests; USDA Forest Service: Washington, DC, USA, 1989.
- European-Union. Council directive 1999/105/EC of 22 December 1999 on the marketing of forest reproductive material. Off. J. Eur. Commun. 2000, L11, 17–40. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31999L0105 (accessed on 25 March 2019).
- European-Union. Commission implementing directive 2017/1279 of 41 July 2017, amending Council Directive 2000/29/EC on protective measures against the introduction into the community of organisms harmful to plants or plant products and against their spread within the community. Off. J. Eur. Union 2017, L184, 33–62. Available online: https://www.agriculture.gov.ie/media/migration/farmingsectors/planthealthandtrade/tradernotices2017/CommImpDirEU181217.pdf (accessed on 25 March 2019).
Sample Code | Pinus Species | Geographic Origin | Native State | Type of Commercial Outlet | Seedlot Source or Location |
---|---|---|---|---|---|
Turkey | |||||
Ps1 | P. pinaster | Europe | Non-native | Seed stand | Kerpe |
Ps2 | P. nigra subsp. pallsiana | Europe | Native | Seed orchard | Bartın |
Ps3 | P. brutia | Europe | Native | Seed orchard | Döşemealtı, Antalya |
Ps5 | P. sylvestris | Europe | Native | Seed orchard | Sarıkamış |
Ps6 | P. radiata | California USA, Mexico | Non-native | Seed stand | Kerpe |
Ps7 | P. halepensis | Europe | Native | Seed stand | Fethiye |
Ps26 | P. pinea | Europe | Native | Seed stand | Döşemealtı, Antalya |
Sweden | |||||
Ps10 | P. sylvestris | Europe | Native | Seed orchard | Moliden |
Ps11 | P. sylvestris | Europe | Native | Seed orchard | Lycksta |
Ps12 | P. sylvestris | Europe | Native | Seed orchard | Gotthardsberg |
USA | |||||
Ps13 | P. sylvestris | Europe | Non-native | Internet order | n/a* |
Ps14 | P. thunbergii | Asia | Non-native | Internet order | n/a |
Ps15 | P. patula | Mexico | Non-native | Internet order | n/a |
Ps16 | P. taeda | Eastern USA | Native | Internet order | n/a |
Ps17 | P. densiflora | Asia | Non-native | Internet order | n/a |
Ps18 | P. radiata | California USA, Mexico | Native | Internet order | n/a |
Ps19 | P. elliottii | Southeastern USA | Native | Internet order | n/a |
Portugal | |||||
Ps20 | P. strobus | Eastern USA and Canada | Non-native | Seed stand | n/a |
Ps21 | P. mugo | Central Europe | Non-native | Seed stand | n/a |
Ps22 | P. pinaster | Europe | Native | Seed stand | n/a |
Ps23 | P. sylvestris | Europe | Native | Seed stand | n/a |
Ps24 | P. radiata | California USA, Mexico | Non-native | Seed stand | n/a |
Ps25 | P. pinea | Europe | Native | Seed stand | n/a |
Sample Code | Pinus Species | Total Fungal Community | “Plant pathogens” | ||
---|---|---|---|---|---|
Chao1 | Shannon_H | Chao1 | Shannon_H | ||
Turkey | |||||
Ps1 | P. pinaster | 200 | 2.833 | 26 | 1.424 |
Ps2 | P. nigra subsp. pallsiana | 86 | 2.538 | 22 | 1.621 |
Ps3 | P. brutia | 68 | 1.899 | 23 | 0.8489 |
Ps5 | P. sylvestris | 100 | 1.871 | 24 | 1472 |
Ps6 | P. radiata | 356 | 2.895 | 36 | 1.603 |
Ps7 | P. halepensis | 327 | 4.222 | 65 | 2.165 |
Ps26 | P. pinea | 112 | 0.8114 | 43 | 0.661 |
Sweden | |||||
Ps10 | P. sylvestris | 156 | 2.562 | 28 | 0.6453 |
Ps11 | P. sylvestris | 20 | 1.91 | 10 | 1.449 |
Ps12 | P. sylvestris | 238 | 3.254 | 36 | 1.47 |
USA | |||||
Ps13 | P. sylvestris | 37 | 2.377 | 6 | 0.931 |
Ps14 | P. thunbergii | 154 | 2.461 | 59 | 1.692 |
Ps15 | P. patula | 133 | 3.215 | 18 | 2.182 |
Ps16 | P. taeda | 153 | 1.78 | 54 | 1.181 |
Ps17 | P. densiflora | 203 | 3.119 | 52 | 1.902 |
Ps18 | P. radiata | 149 | 2.439 | 51 | 1.405 |
Ps19 | P. elliottii | 53 | 2.608 | 28 | 2.254 |
Portugal | |||||
Ps20 | P. strobus | 275 | 3.898 | 69 | 2.541 |
Ps21 | P. mugo | 37 | 2.583 | 8 | 1.769 |
Ps22 | P. pinaster | 82 | 2.323 | 28 | 0.9963 |
Ps23 | P. sylvestris | 102 | 3.79 | 18 | 2.136 |
Ps24 | P. radiata | 165 | 1.495 | 30 | 0.2639 |
Ps25 | P. pinea | 118 | 2.147 | 86 | 2.115 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cleary, M.; Oskay, F.; Doğmuş, H.T.; Lehtijärvi, A.; Woodward, S.; Vettraino, A.M. Cryptic Risks to Forest Biosecurity Associated with the Global Movement of Commercial Seed. Forests 2019, 10, 459. https://doi.org/10.3390/f10050459
Cleary M, Oskay F, Doğmuş HT, Lehtijärvi A, Woodward S, Vettraino AM. Cryptic Risks to Forest Biosecurity Associated with the Global Movement of Commercial Seed. Forests. 2019; 10(5):459. https://doi.org/10.3390/f10050459
Chicago/Turabian StyleCleary, Michelle, Funda Oskay, Hatice Tugba Doğmuş, Asko Lehtijärvi, Stephen Woodward, and Anna Maria Vettraino. 2019. "Cryptic Risks to Forest Biosecurity Associated with the Global Movement of Commercial Seed" Forests 10, no. 5: 459. https://doi.org/10.3390/f10050459