An End to End Process Development for UAV-SfM Based Forest Monitoring: Individual Tree Detection, Species Classification and Carbon Dynamics Simulation
Abstract
:1. Introduction
1.1. Forest Carbon Management
1.2. Forest Monitoring
1.3. Forest Structure Estimation
1.4. Forest Ecosystem Simulation
1.5. Objectives of This Study
2. Methodology
2.1. Data Collection
2.1.1. 3D Point Cloud Data Generation
2.1.2. Tuning and Validation Data Sampling
2.2. Procedure of Individual Tree Detection
2.2.1. CHM Estimation
2.2.2. Tree Top Detection
2.2.3. Tree Crown Segmentation
2.3. Tree Structure Estimation
2.3.1. Crown Images Generation
2.3.2. Tree Species Classifier Construction
2.3.3. DBH Estimation
2.4. Carbon Dynamics Simulation
2.4.1. Forest Model Selection
2.4.2. Spatial Tree Distribution Settings and Plant Parameters Tuning
2.4.3. Carbon Dynamics Simulation and Visualization
3. Results
3.1. Data Collection
3.1.1. 3D Point Cloud Data
3.1.2. Tuning and Validation Data
3.2. Individual Tree Detection
3.2.1. Estimated CHM
3.2.2. Extracted Individual Tree
3.3. Tree Structure Estimation
3.3.1. Species Classifier
3.3.2. Estimated DBH
3.4. Carbon Dynamics Simulation
4. Discussion
4.1. How to Improve the Accuracy of 3D Point Cloud Data
4.2. Individual Tree Detection and Issues
4.3. How to Improve the Accuracy of Species Classification
4.4. Application for Carbon Dynamics Simulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Unit | Site | Plant Functional Type (PFT) | ||
---|---|---|---|---|---|
1 (Cedar) | 2 (Cypress) | ||||
Geometry | h0 | - | 79.5 | 70.0 | |
h1 | - | 0.65 | 0.60 | ||
Cd0 | - | 13.2 | 13.2 | ||
Cd1 | - | 0.77 | 0.77 | ||
f0 | - | Site 1 | 0.38 | 0.42 | |
Site 2 | 0.37 | 0.40 | |||
f1 | - | Site 1 | −0.19 | −0.20 | |
Site 2 | −0.20 | −0.21 | |||
ρ | tODM/m3 | 0.70 | 0.70 | ||
Mortality | MB | year−1 | Site 1 | 0.002 | 0.003 |
Site 2 | 0.007 | 0.010 | |||
Photo-synthesis | pmax | µmolCO2 m−2 s−1 | 7.3 | 8.3 | |
α | µmolCO2 | 0.029 | 0.048 | ||
µmolphoton | |||||
Growth | ∆D max | m year−1 | 0.01 | 0.01 | |
D max | M | 0.45 | 0.62 |
References
- The Paris Agreement|UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 7 February 2019).
- The Intergovernmental Panel on Climate Change, Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/sr15/ (accessed on 21 June 2019).
- UN-REDD. Evaluation Final Report July 2014 (SPN)—UN-REDD Programme Collaborative Online Workspace. Available online: https://unredd.net/documents/global-programme-191/un-redd-programme-evaluation-3266/13005-un-redd-evaluation-final-report-july-2014-spn-13005.html?path=global-programme-191/un-redd-programme-evaluation-3266 (accessed on 12 March 2019).
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Valentini, R.; Matteucci, G.; Dolman, A.J.; Schulze, E.-D.; Rebmann, C.; Moors, E.J.; Granier, A.; Gross, P.; Jensen, N.O.; Pilegaard, K.; et al. Respiration as the main determinant of carbon balance in European forests. Nature 2000, 404, 861–865. [Google Scholar] [CrossRef]
- Janssens, I.A.; Freibauer, A.; Ciais, P.; Smith, P.; Nabuurs, G.-J.; Folberth, G.; Schlamadinger, B.; Hutjes, R.W.A.; Ceulemans, R.; Schulze, E.-D.; et al. Europe’s Terrestrial Biosphere Absorbs 7 to 12% of European Anthropogenic CO2 Emissions. Science 2003, 300, 1538–1542. [Google Scholar] [CrossRef] [PubMed]
- Pour, N.; Webley, P.A.; Cook, P.J. Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS). Int. J. Greenh. Gas Control. 2018, 68, 1–15. [Google Scholar] [CrossRef]
- Kemper, J. Biomass and carbon dioxide capture and storage: A review. Int. J. Greenh. Gas Control. 2015, 40, 401–430. [Google Scholar] [CrossRef]
- AR5 Synthesis Report: Climate Change 2014—IPCC. Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 7 February 2019).
- Birdsey, R.; Ángeles-Pérez, G.; A Kurz, W.; Lister, A.; Olguín, M.; Pan, Y.; Wayson, C.; Wilson, B.; Johnson, K. Approaches to monitoring changes in carbon stocks for REDD+. Carbon Manag. 2013, 4, 519–537. [Google Scholar] [CrossRef]
- Goetz, S.J.; Baccini, A.; Laporte, N.T.; Johns, T.; Walker, W.; Kellndorfer, J.; A Houghton, R.; Sun, M. Mapping and monitoring carbon stocks with satellite observations: A comparison of methods. Carbon Balance Manag. 2009, 4, 2. [Google Scholar] [CrossRef]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manag. 2010, 259, 857–866. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Roise, J.P.; Harnish, K.; Mohan, M.; Scolforo, H.; Chung, J.; Kanieski, B.; Catts, G.P.; McCarter, J.B.; Posse, J.; Shen, T. Valuation and Production Possibilities on a Working Forest using Multi-objective programming, Woodstock, Timber NPV, and Carbon Storage and Sequestration. Scand. J. For. Res. 2016, 31, 1–16. [Google Scholar] [CrossRef]
- Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Falkowski, M.J.; Smith, A.M.; E Gessler, P.; Morgan, P. Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data. Can. J. Remote. Sens. 2006, 32, 126–138. [Google Scholar] [CrossRef]
- Sheng, Y.; Gong, P.; Biging, G.S. Model-based conifer-crown surface reconstruction from high-resolution aerial images. Photogramm. Eng. Remote Sens. 2001, 67, 957–966. [Google Scholar]
- Thome, K. MODIS|Terra. Available online: https://terra.nasa.gov/about/terra-instruments/modis (accessed on 7 February 2019).
- About Landsat. Available online: https://www.usgs.gov/land-resources/nli/landsat/about-landsat?qt-science_support_page_related_con=2#qt-science_support_page_related_con (accessed on 7 February 2019).
- NOAA Satellite Information System (NOAASIS). Available online: https://noaasis.noaa.gov/NOAASIS/mL/avhrr.html (accessed on 7 February 2019).
- Cohen, W.B.; Goward, S.N. Landsat’s Role in Ecological Applications of Remote Sensing. BioScience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Cohen, W.B.; Harmon, M.E.; Wallin, D.O.; Fiorella, M. Two Decades of Carbon Flux from Forests of the Pacific Northwest. BioScience 1996, 46, 836–844. [Google Scholar] [CrossRef] [Green Version]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. BioScience 2004, 54, 547. [Google Scholar] [CrossRef]
- Wang, F.; D’Sa, E.J. Potential of MODIS EVI in Identifying Hurricane Disturbance to Coastal Vegetation in the Northern Gulf of Mexico. Remote Sens. 2009, 2, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Urbazaev, M.; Thiel, C.; Cremer, F.; Dubayah, R.; Migliavacca, M.; Reichstein, M.; Schmullius, C. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Carbon Balance Manag. 2018, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Havemann, T. Measuring and Monitoring Terrestrial Carbon: The State of the Science and Implications for Policy Makers; UN-REDD Program; FAO: Rome, Italy, 2009. [Google Scholar]
- Saremi, H.; Kumar, L.; Stone, C.; Melville, G.; Turner, R. Sub-Compartment Variation in Tree Height, Stem Diameter and Stocking in a Pinus radiata D. Don Plantation Examined Using Airborne LiDAR Data. Remote Sens. 2014, 6, 7592–7609. [Google Scholar] [CrossRef] [Green Version]
- Hudak, A.T.; Evans, J.S.; Smith, A.M.S. LiDAR Utility for Natural Resource Managers. Remote Sens. 2009, 1, 934–951. [Google Scholar] [CrossRef] [Green Version]
- Hudak, A.T.; Haren, A.T.; Crookston, N.L.; Liebermann, R.J.; Ohmann, J.L. Imputing Forest Structure Attributes from Stand Inventory and Remotely Sensed Data in Western Oregon, USA. For. Sci. 2014, 60, 253–269. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.H.; Gobakken, T.; Bollandsås, O.M.; Zahabu, E.; Næsset, E. Modeling Aboveground Biomass in Dense Tropical Submontane Rainforest Using Airborne Laser Scanner Data. Remote Sens. 2015, 7, 788–807. [Google Scholar] [CrossRef] [Green Version]
- Goodbody, T.R.; Coops, N.C.; Marshall, P.L.; Tompalski, P.; Crawford, P. Unmanned aerial systems for precision forest inventory purposes: A review and case study. For. Chron. 2017, 93, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Messinger, M.; Asner, G.P.; Silman, M. Rapid Assessments of Amazon Forest Structure and Biomass Using Small Unmanned Aerial Systems. Remote. Sens. 2016, 8, 615. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Carleer, A.; Wolff, E. Exploitation of Very High Resolution Satellite Data for Tree Species Identification. Photogramm. Eng. Remote. Sens. 2004, 70, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.C. Estimating biomass of individual pine trees using airborne lidar. Biomass Bioenergy 2007, 31, 646–655. [Google Scholar] [CrossRef]
- Ota, T.; Ogawa, M.; Shimizu, K.; Kajisa, T.; Mizoue, N.; Yoshida, S.; Takao, G.; Hirata, Y.; Furuya, N.; Sano, T.; et al. Aboveground Biomass Estimation Using Structure from Motion Approach with Aerial Photographs in a Seasonal Tropical Forest. Forests 2015, 6, 3882–3898. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Li, J.; Jing, L.; Judah, A. Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 145–155. [Google Scholar] [CrossRef]
- Lim, Y.S.; La, P.H.; Park, J.S.; Lee, M.H.; Pyeon, M.W.; Kim, J.-I. Calculation of Tree Height and Canopy Crown from Drone Images Using Segmentation. J. Korean Soc. Surv. Geodesy Photogramm. Cartogr. 2015, 33, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Onishi, M.; Ise, T. Automatic classification of trees using a UAV onboard camera and deep learning. arXiv 2018, arXiv:1804.10390. [Google Scholar]
- Rödig, E.; Cuntz, M.; Heinke, J.; Rammig, A.; Huth, A. Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory. Glob. Ecol. Biogeogr. 2017, 26, 1292–1302. [Google Scholar] [CrossRef]
- FORMIND the Forest Model. Available online: http://formind.org/model/ (accessed on 7 February 2019).
- SEIB-DGVM. Available online: http://seib-dgvm.com/ (accessed on 7 February 2019).
- Pretzsch, H.; Biber, P.; Ďurský, J. The single tree-based stand simulator SILVA: Construction, application and evaluation. For. Ecol. Manag. 2002, 162, 3–21. [Google Scholar] [CrossRef]
- Saatchi, S.; Mascaro, J.; Xu, L.; Keller, M.; Yang, Y.; Duffy, P.; Espírito-Santo, F.; Baccini, A.; Chambers, J.; Schimel, D. Seeing the forest beyond the trees. Glob. Ecol. Biogeogr. 2015, 24, 606–610. [Google Scholar] [CrossRef]
- Agisoft, Photoscan Professional. Available online: https://www.agisoft.com/ (accessed on 21 June 2019).
- Drones Made Easy. Available online: https://www.dronesmadeeasy.com/ (accessed on 21 June 2019).
- Næsset, E. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS J. Photogramm. Remote. Sens. 1997, 52, 49–56. [Google Scholar] [CrossRef]
- Hudak, A.T.; Lefsky, M.A.; Cohen, W.B.; Berterretche, M. Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sens. Environ. 2002, 82, 397–416. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Estimating plot-level tree heights with lidar: Local filtering with a canopy-height based variable window size. Comput. Electron. Agric. 2002, 37, 71–95. [Google Scholar] [CrossRef]
- Maltamo, M.; Mustonen, K.; Hyyppä, J.; Pitkänen, J.; Yu, X. The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve. Can. J. For. Res. 2004, 34, 1791–1801. [Google Scholar] [CrossRef]
- Hopkinson, C.; Chasmer, L.; Lim, K.; Treitz, P.; Creed, I. Towards a universal lidar canopy height indicator. Can. J. Remote. Sens. 2006, 32, 139–152. [Google Scholar] [CrossRef]
- Lim, K.; Treitz, P.; Wulder, M.; St-Onge, B.; Flood, M.; St-Onge, B. LiDAR remote sensing of forest structure. Prog. Phys. Geogr. Earth Environ. 2003, 27, 88–106. [Google Scholar] [CrossRef] [Green Version]
- FUSION/LDV LIDAR Analysis and Visualization Software. Available online: http://forsys.cfr.washington.edu/fusion/fusion_overview.html (accessed on 20 March 2019).
- ArcMap|ArcGIS Desktop. Available online: http://desktop.arcgis.com/ja/arcmap/ (accessed on 20 March 2019).
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Loudermilk, E.L.; O’Brien, J.J.; Hiers, J.K.; Jack, S.B.; Gonzalez-Benecke, C.; Lee, H.; Falkowski, M.J.; et al. Imputation of Individual Longleaf Pine (Pinus palustris Mill.) Tree Attributes from Field and LiDAR Data. Can. J. Remote. Sens. 2016, 42, 554–573. [Google Scholar] [CrossRef]
- Takahashi, T.; Senda, Y.; Tsuzuku, M.; Yamamoto, K. Predicting individual stem volumes of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. J. For. Res. 2005, 10, 305–312. [Google Scholar] [CrossRef]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can. J. Remote. Sens. 2003, 29, 564–577. [Google Scholar] [CrossRef]
- Mohan, M.; Silva, C.A.; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.T.; Dia, M. Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forests 2017, 8, 340. [Google Scholar] [CrossRef]
- Silva, C.A.; Crookston, N.L.; Hudak, A.T.; Vierling, L.A. LiDAR Data Processing and Visualization. 2015. Available online: https://cran.r-project.org/web/packages/rLiDAR/rLiDAR.pdf (accessed on 10 August 2019).
- Imaging and Point-Cloud App, Bentley Pointools View. Available online: https://www.bentley.com/ja/products/product-line/reality-modeling-software/bentley-pointools-view (accessed on 20 March 2019).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Apache MXNet. Available online: https://mxnet.apache.org/ (accessed on 7 February 2019).
- ImageNet. Available online: http://www.image-net.org/ (accessed on 7 February 2019).
- ImageNet: A Large-Scale Hierarchical Image Database—IEEE Conference Publication. Available online: https://ieeexplore.ieee.org/document/5206848 (accessed on 7 February 2019).
- Perez, L.; Wang, J. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. arXiv 2017, arXiv:1712.04621. [Google Scholar]
- Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random Erasing Data Augmentation. arXiv 2017, arXiv:1708.04896. [Google Scholar]
- Devries, T.; Taylor, G.W. Improved Regularization of Convolutional Neural Networks with Cutout 2017. arXiv 2017, arXiv:1708.04552. [Google Scholar]
- Jucker, T.; Caspersen, J.; Chave, J.; Antin, C.; Barbier, N.; Bongers, F.; Dalponte, M.; Ewijk, K.Y.; van Forrester, D.I.; Haeni, M.; et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Chang. Biol. 2017, 23, 177–190. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Boil. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Dalponte, M.; Coomes, D.A. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol. Evol. 2016, 7, 1236–1245. [Google Scholar] [CrossRef]
- FORMIND Handbook. Available online: http://formind.org/wpfor/wp-content/uploads/2015/12/FORMIND_Handbook.pdf (accessed on 24 July 2019).
- Fischer, R.; Rödig, E.; Huth, A. Consequences of a Reduced Number of Plant Functional Types for the Simulation of Forest Productivity. Forests 2018, 9, 460. [Google Scholar] [CrossRef]
- Kammesheidt, L.; Köhler, P.; Huth, A. Sustainable timber harvesting in Venezuela: A modelling approach. J. Appl. Ecol. 2001, 38, 756–770. [Google Scholar] [CrossRef]
- Köhler, P.; Huth, A. Simulating growth dynamics in a South-East Asian rain forest threatened by recruitment shortage and tree harvesting. Clim. Chang. 2004, 67, 95–117. [Google Scholar] [CrossRef]
- Rammig, A.; Heinke, J.; Hofhansl, F.; Verbeeck, H.; Baker, T.R.; Christoffersen, B.; Ciais, P.; De Deurwaerder, H.; Fleischer, K.; Galbraith, D.; et al. A generic pixel-to-point comparison for simulated large-scale ecosystem properties and ground-based observations: An example from the Amazon region. Geosci. Model Dev. Discuss. 2018, 11, 1–21. [Google Scholar] [CrossRef]
- Bohn, F.J.; Frank, K.; Huth, A. Of climate and its resulting tree growth: Simulating the productivity of temperate forests. Ecol. Model. 2014, 278, 9–17. [Google Scholar] [CrossRef]
- Van Oijen, M.; Reyer, C.; Bohn, F.; Cameron, D.; Deckmyn, G.; Flechsig, M.; Harkonen, S.; Hartig, F.; Huth, A.; Kiviste, A.; et al. Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe. For. Ecol. Manag. 2013, 289, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Gifu Land of Clear Waters. Available online: https://www.pref.gifu.lg.jp/sangyo/shinrin/shinrin-keikaku/11511/index_47930.html (accessed on 7 February 2019).
- REED+RL.pdf. Available online: http://www.redd-oar.org/links/REED+RL.pdf (accessed on 18 March 2019).
- Wagner, A.K.; Soumerai, S.B.; Zhang, F.; Ross-Degnan, D.; Ross-Degnan, D. Segmented regression analysis of interrupted time series studies in medication use research. J. Clin. Pharm. Ther. 2002, 27, 299–309. [Google Scholar] [CrossRef]
- Aoki, S. Oresen Function. Available online: http://aoki2.si.gunma-u.ac.jp/R/src/oresen.R (accessed on 25 July 2019).
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 10 August 2019).
- Ogawa, K. Environment and Forest Measurement (Use of Arial Digital Images). Forest Geogr. Inf. Mag. LA FORET 2009, 2, 16–17. [Google Scholar]
- Georeferencing UAV PPK. GPS Accuracy, Drone Mapping, Aerial Surveying. Available online: https://www.klauppk.com/ (accessed on 20 March 2019).
- JAXA. Quasi-Zenith Satellite-1 “MICHIBIKI”. Available online: https://global.jaxa.jp/projects/sat/qzss/ (accessed on 13 June 2019).
- Jakubowski, M.K.; Li, W.; Guo, Q.; Kelly, M. Delineating Individual Trees from Lidar Data: A Comparison of Vector- and Raster-based Segmentation Approaches. Remote. Sens. 2013, 5, 4163–4186. [Google Scholar] [CrossRef] [Green Version]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote. Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Guan, H.; Yu, Y.; Ji, Z.; Li, J.; Zhang, Q. Deep learning-based tree classification using mobile LiDAR data. Remote. Sens. Lett. 2015, 6, 864–873. [Google Scholar] [CrossRef]
- Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.N.; et al. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote. Sens. 2017, 9, 185. [Google Scholar] [CrossRef]
- Forestry Agency, White Paper, FY2017 Annual Report on Forest, Policies for Demonstrating Forest’s Multi-Functions. Available online: http://www.rinya.maff.go.jp/j/kikaku/hakusyo/29hakusyo_h/all/sesaku1_1.html?words=%E5%BA%83%E8%91%89%E6%A8%B9%E6%9E%97 (accessed on 20 March 2019).
- Visualizing Forest Futures. Available online: https://sites.google.com/a/pdx.edu/visualizing-forest-futures/ (accessed on 20 March 2019).
- Thompson, J.R.; Lambert, K.F.; Foster, D.R.; Broadbent, E.N.; Blumstein, M.; Zambrano, A.M.A.; Fan, Y. The consequences of four land-use scenarios for forest ecosystems and the services they provide. Ecosphere 2016, 7, e01469. [Google Scholar] [CrossRef]
- Haga, C.; Inoue, T.; Hotta, W.; Shibata, R.; Hashimoto, S.; Kurokawa, H.; Machimura, T.; Matsui, T.; Morimoto, J.; Shibata, H. Simulation of natural capital and ecosystem services in a watershed in Northern Japan focusing on the future underuse of nature: By linking forest landscape model and social scenarios. Sustain. Sci. 2019, 14, 89–106. [Google Scholar] [CrossRef]
- De Jager, N.R.; Drohan, P.J.; Miranda, B.M.; Sturtevant, B.R.; Stout, S.L.; Royo, A.A.; Gustafson, E.J.; Romanski, M.C. Simulating ungulate herbivory across forest landscapes: A browsing extension for LANDIS-II. Ecol. Model. 2017, 350, 11–29. [Google Scholar] [CrossRef] [Green Version]
Attribute | Site 1 | Site 2 | |
---|---|---|---|
Number of images | 129 | 152 | |
Altitude of UAV flight | m | 86.3 | 98.0 |
Ground resolution | cm/pix | 3.11 | 2.27 |
Coverage area | km2 | 0.075 | 0.096 |
Tie-points | 1,439,937 | 240,169 | |
Error | Pix | 0.417 | 0.494 |
Setting | Selected Option |
---|---|
Training epochs | 10 |
Batch size | 64 |
Base learning rate | 0.01 |
Solver type | SGD |
Network | ResNet-200 |
Species | Attributes | Site 1 | Site 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Min | Max | Mean | N | Min | Max | Mean | |||
cypress | DBH | m | 115 | 0.125 | 0.454 | 0.324 | 27 | 0.169 | 0.302 | 0.230 |
Tree Height | m | 25 | 20.8 | 27.0 | 24.1 | 18 | 14.6 | 24.0 | 18.7 | |
cedar | DBH | m | 22 | 0.163 | 0.374 | 0.238 | 182 | 0.173 | 0.509 | 0.283 |
Tree Height | m | 5 | 15.0 | 26.7 | 22.5 | 93 | 14.0 | 26.8 | 21.6 |
TP | FN | Recall | ||
---|---|---|---|---|
cypress | Site 1 | 107 | 8 | 0.93 |
Site 2 | 27 | 0 | 1.00 | |
cedar | Site 1 | 16 | 6 | 0.73 |
Site 2 | 169 | 13 | 0.93 |
Reference | N | Precision | |||
---|---|---|---|---|---|
Cypress | Cedar | ||||
Prediction | cypress | 279 | 50 | 329 | 0.848 (0.01) |
cedar | 47 | 215 | 262 | 0.821 (0.01) | |
N | 326 | 265 | 591 | ||
Recall | 0.856 (0.01) | 0.811 (0.01) | Overall Accuracy | ||
F-value | 0.852 (0.01) | 0.816 (0.01) | 0.836 (0.01) |
Site 1 | Site 2 | ||||
---|---|---|---|---|---|
2019 | 2100 | 2019 | 2100 | ||
Number of Trees | trees | 263 | 214 | 319 | 164 |
cypress | 169 | 133 | 57 | 20 | |
cedar | 94 | 81 | 262 | 144 | |
Density | trees/ha | 325 | 264 | 332 | 171 |
DBH | m | 0.19 (0.09) | 0.42 (0.07) | 0.17 (0.08) | 0.43 (0.04 |
Tree Height | m | 16.2 (5.84) | 29.6 (4.07) | 15.3 (6.08) | 30.5 (8.16) |
Stem Volume | m3 | 1.51 (1.54) | 8.12 (2.80) | 1.09 (1.47) | 9.25 (4.34) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujimoto, A.; Haga, C.; Matsui, T.; Machimura, T.; Hayashi, K.; Sugita, S.; Takagi, H. An End to End Process Development for UAV-SfM Based Forest Monitoring: Individual Tree Detection, Species Classification and Carbon Dynamics Simulation. Forests 2019, 10, 680. https://doi.org/10.3390/f10080680
Fujimoto A, Haga C, Matsui T, Machimura T, Hayashi K, Sugita S, Takagi H. An End to End Process Development for UAV-SfM Based Forest Monitoring: Individual Tree Detection, Species Classification and Carbon Dynamics Simulation. Forests. 2019; 10(8):680. https://doi.org/10.3390/f10080680
Chicago/Turabian StyleFujimoto, Ayana, Chihiro Haga, Takanori Matsui, Takashi Machimura, Kiichiro Hayashi, Satoru Sugita, and Hiroaki Takagi. 2019. "An End to End Process Development for UAV-SfM Based Forest Monitoring: Individual Tree Detection, Species Classification and Carbon Dynamics Simulation" Forests 10, no. 8: 680. https://doi.org/10.3390/f10080680