Effects of One-Year Simulated Nitrogen and Acid Deposition on Soil Respiration in a Subtropical Plantation in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Soil Respiration Measurement
2.4. Soil Sample Collection and Determination
2.5. Statistical Analysis
3. Results
3.1. N and Acid Addition Effects on Rs Dynamics and Average Annual Efflux
3.2. N and acid Addition Effects on Average Annual Efflux
3.3. N and Acid Addition Effects on Soil Enzyme Activity and Soil Properties
3.4. Relationships Between Rs and Soil Properties
4. Discussion
4.1. Soil Respiration Response to N Addition
4.2. Effect of Acid Treatment on Soil Respiration
4.3. Interaction Between N Addition and Acid Addition on Soil Respiration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duan, L.; Yu, Q.; Zhang, Q.; Wang, Z.; Pan, Y.; Larssen, T.; Mulder, J. Acid deposition in Asia: Emissions, deposition, and ecosystem effects. Atmos. Environ. 2016, 146, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Reay, D.S.; Dentener, F.; Smith, P.; Grace, J.; Feely, R.A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 2008, 1, 430–437. [Google Scholar] [CrossRef]
- Yu, H.L.; He, N.P.; Wang, Q.; Zhu, J.X.; Gao, Y.; Zhang, Y.; Jia, Y.; Yu, G. Development of atmospheric acid deposition in China from the 1990s to the 2010s. Environ. Pollut. 2017, 231, 182–190. [Google Scholar] [CrossRef]
- Gu, B.; Ju, X.; Chang, J.; Ge, Y.; Vitousek, P.M. Integrated reactive nitrogen budgets and future trends in China. PNAS 2015, 112, 8792–8797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, F.; Huang, M.; Zhang, Y. Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961−2010. Acta Ecol. Sin. 2016, 36, 3591–3600, (Chinese with English abstract). [Google Scholar]
- Du, E.; De Vries, W.; Han, W. Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmos. Chem. Phys. 2016, 16, 8571–8579. [Google Scholar] [CrossRef] [Green Version]
- Shen, J. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China. Atmos. Environ. 2013, 67, 415–424. [Google Scholar] [CrossRef]
- Jia, J.; Gao, Y. Acid deposition and assessment of its critical load for the environmental health of waterbodies in a subtropical watershed, China. J. Hydrol. 2017, 555, 155–168. [Google Scholar] [CrossRef]
- Zhao, Y.; Duan, L.; Xing, J.; Larssen, T.; Nielsen, C.P.; Hao, J.M. Soil Acidification in China: Is controlling SO2 emissions enough. Environ. Sci. Technol. 2009, 43, 8021–8026. [Google Scholar] [CrossRef] [Green Version]
- Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef]
- Mo, J.M.; Zhang, W.; Zhu, W.X. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Chang. Biol. 2008, 14, 403–412. [Google Scholar] [CrossRef]
- Liang, G.H.; Wu, J.P.; Xiong, X.; Wu, X.Y.; Chu, G.W.; Zhou, G.Y.; Zeng, R.S.; Zhang, D.Q. Response of soil respiration to simulated acid rain in three successional subtropical forests in Southern China. Chin. J. Eco-Agric. 2016, 35, 125–134. [Google Scholar]
- Tu, L.H.; Hu, T.X.; Zhang, J. Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem. Soil Biol. Biochem. 2013, 58, 255–264. [Google Scholar] [CrossRef]
- Zheng, S.; Bian, H.; Quan, Q.; Xu, L.; Chen, Z.; He, N. Effect of nitrogen and acid deposition on soil respiration in a temperate forest in China. Geoderma 2018, 329, 82–90. [Google Scholar] [CrossRef]
- Luo, Y. Terrestrail carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 683–712. [Google Scholar] [CrossRef] [Green Version]
- Metcalfe, D.; Fisher, R.; Wardle, D. Plant communities as drivers of soil respiration: Pathways, mechanisms, and significance for global change. Biogeosciences 2011, 8, 2047–2061. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Wang, C.; Wang, F.; Zhao, G.; Pu, G.; Ma, X.; Tian, X. Effects of nitrogen addition on litter decomposition, soil microbial biomass, and enzyme activities between leguminous and non-leguminous forests. Ecol. Res. 2013, 28, 793–800. [Google Scholar] [CrossRef]
- Peng, Q.; Dong, Y.S.; Qi, Y.C.; Xiao, S.S.; He, Y.T.; Ma, T. Effects of nitrogen fertilization on soil respiration in temperate grassland in Inner Mongolia, China. Environ. Earth Sci. 2011, 62, 1163–1171. [Google Scholar] [CrossRef]
- Sun, H.F.; Zhu, J.G.; Xie, Z.B.; Liu, G.; Tang, H.Y. Effect of atmospheric CO2 enrichment on soil respiration in winter wheat growing seasons of a rice-wheat rotation system. Pedosphere 2013, 23, 752–766. [Google Scholar] [CrossRef]
- Tu, L.H.; Hu, T.X.; Zhang, J.A.; Li, R.H.; Dai, H.Z.; Luo, S.H. Short-term simulated nitrogen deposition increases carbon sequestration in a Pleioblastus amarus plantation. Plant Soil 2011, 340, 383–396. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, X.; Zhang, B.; Lu, M.; Luo, Y.; Liu, L.; Li, B. Different responses of soil respiration and its components to nitrogen addition among biomes: A meta-analysis. Glob. Chang. Biol. 2014, 20, 2332–2343. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, X.; Shao, J.; Nie, Y.; He, Y.; Jiang, L.; Bai, S.H. Interactive effects of global change factors on soil respiration and its components: A meta-analysis. Glob. Chang. Biol. 2016, 22, 3157–3169. [Google Scholar] [CrossRef]
- Chen, D.M.; Wang, Y.; Lan, Z.C.; Li, J.J.; Xing, W.; Hu, S.J.; Bai, Y.F. Biotic community shifts explain the contrasting responses of microbial and root respiration to experimental soil acidification. Soil Biol. Biochem. 2015, 90, 139–147. [Google Scholar] [CrossRef]
- Devaraju, N.; Bala, G.; Caldeira, K.; Nemani, R. A model based investigation of the relative importance of CO2-fertilization, climate warming, nitrogen deposition and land use change on the global terrestrial carbon uptake in the historical period. Clim. Dyn. 2016, 47, 173–190. [Google Scholar] [CrossRef]
- Janssens, I.A.; Dieleman, W.; Luyssaert, S.; Subke, J.A.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G.; et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315–322. [Google Scholar] [CrossRef]
- Ramirez, K.S.; Craine, J.M.; Fierer, N. Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied. Soil Biol. Biochem. 2010, 42, 2336–2338. [Google Scholar] [CrossRef]
- Allison, S.D.; Czimczik, C.I.; Treseder, K.K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob. Chang. Biol. 2008, 14, 1156–1168. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Greaver, T.L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 2010, 13, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, L.; Mathew, R.; Stokes, T.; Feng, Y.C.; Aubrey, D.; Coleman, M. Soil and microbial respiration in a loblolly pine plantation in response to seven years of irrigation and fertilization. For. Ecol. Manag. 2009, 258, 2431–2438. [Google Scholar] [CrossRef]
- Zhong, Y.; Yan, W.; Shangguan, Z. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties. Glob. Ecol. Biogeogr. 2016, 25, 475–488. [Google Scholar] [CrossRef]
- Bowden, R.D.; Davidson, E.; Savage, K.; Arabia, C.; Steudler, P. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. For. Ecol. Manag. 2004, 196, 43–56. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, Z.H.; Yu, J.B.; Wu, L.X.; Han, G.X.; Yang, L.Q.; Xing, Q.H.; Xie, B.H.; Mao, P.L.; Wang, G.M. Effect of nitrogen deposition on soil respiration in Phragmites australis wetland in the Yellow River Delta, China. J. Plant Ecol. 2013, 37, 517–529. [Google Scholar] [CrossRef]
- Fangueiro, D.; Surgy, S.; Coutinho, J. Impact of cattle slurry acidification on carbon and nitrogen dynamics during storage and after soil incorporation. J. Plant Nutr. Soil Sci. 2013, 176, 540–550. [Google Scholar] [CrossRef]
- Liang, G.H.; Liu, X.Z.; Chen, X.M. Response of soil respiration to acid rain in forests of different maturity in Southern China. PLoS ONE 2013, 8, e62207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oulehle, F.; Evans, C.D.; Hofmeister, J.; Krejci, R.; Tahovska, K.; Persson, T.; Cudlin, P.; Hruska, J. Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition. Glob. Chang. Biol. 2011, 17, 3115–3129. [Google Scholar] [CrossRef]
- Su, Y.G.; Huang, G.; Lin, Y.J.; Zhang, Y.M. No synergistic effects of water and nitrogen addition on soil microbial communities and soil respiration in a temperate desert. Catena 2016, 142, 126–133. [Google Scholar] [CrossRef]
- Vanhala, P.; Fritze, H.; Neuvonen, S. Prolonged simulated acid rain treatment in the subarctic: Effect on the soil respiration rate and microbial biomass. Biol. Fertil. Soils 1996, 23, 7–14. [Google Scholar] [CrossRef]
- Hutchinson, T.C.; Watmough, S.A.; Sager, E.P.S. The impact of simulated acid rain and fertilizer application on a mature sugar maple (Acer saccharum Marsh) forest in central Ontario, Canada. Water Air Soil Pollut. 1999, 109, 17–39. [Google Scholar] [CrossRef]
- Sitaula, B.K.; Bakken, L.R.; Abrahamsen, G. N-fertilization and soil acidification effects on N2O and CO2 emission from temperate pine forest soil. Soil Biol. Biochem. 1995, 27, 1401–1408. [Google Scholar] [CrossRef]
- Chen, D.M.; Li, J.J.; Lan, Z.C.; Hu, S.J.; Bai, Y.F. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Funct. Ecol. 2016, 30, 658–669. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Tian, D.S.; Wang, J.S.; Ha, D.L.; Qu, Y.X.; Jing, G.W.; Niu, S.L. Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Sci. Total Environ. 2018, 615, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, C.C.; Townsend, A.R.; Schmidt, S.K. Phosphorus limitation of microbial processes in moist tropical forests: Evidence from short-term laboratory incubations and field studies. Ecosystems 2002, 5, 680–691. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Townsend, A.R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc. Natl. Acad. Sci. USA 2006, 103, 10316–10321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, S.S.; Wang, J.; Shi, Z. Responses of Soil Respiration and Its Main Components to Nitrogen Addition in a Subtropical Pinuselliottii Plantation. Res. Environ. Sci. 2018, 31, 1105–1113, (Chinese with English abstract). [Google Scholar]
- Lü, C.; Tian, H. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. J. Geophys. Res. Atmos. 2007, 112, 10–15. [Google Scholar] [CrossRef]
- Yu, H.L.; He, N.P.; Wang, Q.F.; Zhu, J.X.; Xu, L.; Zhu, Z.L.; Yu, G.R. Wet acid deposition in Chinese natural and agricultural ecosystems: Evidence from nationalscale monitoring. J. Geophys. Res. Atmos. 2016, 121, 10995–11005. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.J.; Yang, J.; Hu, J.M.; Tang, C.J.; Zheng, H.J. Characteristics of the surface-subsurface flow generation and sediment yield to the rainfall regime and land-cover by long-term in-situ observation in the red soil region, Southern China. J. Hydrol. 2016, 539, 457–467. [Google Scholar] [CrossRef]
- Voroney, R.P.; Brookes, P.C.; Beyaert, R.P. Soil microbial biomass C, N, P, and S. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRS Press: Boca Raton, FL, USA, 2008; pp. 637–652. [Google Scholar]
- Sinsabaugh, R.L.; Carreiro, M.M.; Repert, D.A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 2002, 60, 1–24. [Google Scholar] [CrossRef]
- Fan, H.; Wu, J.; Liu, W. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest. Plant Soil 2014, 379, 361–371. [Google Scholar] [CrossRef]
- Du, Y.; Han, H.; Wang, Y.; Zhong, M.; Hui, D.; Niu, S.; Wan, S. Plant functional groups regulate soil respiration responses to nitrogen addition and mowing over a decade. Funct. Ecol. 2018, 32, 1117–1127. [Google Scholar] [CrossRef]
- Wu, J.P.; Liu, W.F.; Fan, H.B. A synchronous responses of soil microbial community and under story plant community to simulated nitrogen deposition in a subtropical forest. Ecol. Evol. 2013, 3, 3895–3905. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Jiang, L.; Hu, S. Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. Soil Biol. Biochem. 2014, 72, 116–122. [Google Scholar] [CrossRef]
- Frey, S.D.; Knorr, M.; Parrent, J.L. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 2004, 196, 159–171. [Google Scholar] [CrossRef]
- Persson, H.; Ahlstom, K.; Clemensson-Lindell, A. Nitrogen addition and removal at nitrogen effects on fine-root growth and fine-root chemistry. For. Ecol. Manag. 1998, 101, 199–205. [Google Scholar] [CrossRef]
- Bowman, W.D.; Cleveland, C.C.; Halada, Ĺ.H.J.; Baron, J.S. Negative impact of nitrogen deposition on soil buffering capacity. Nat. Geosci. 2008, 1, 767–770. [Google Scholar] [CrossRef]
- Singh, A.; Agrawal, M. Acid rain and its ecological consequences. J. Environ. Biol. 2008, 29, 15–24. [Google Scholar]
- Baath, E.; Lundgren, B.; Soderstrom, B. Effects of artificial acid rain on microbial activity and biomass. Bull. Environ. Contam. Toxicol. 1979, 23, 737–740. [Google Scholar] [CrossRef]
- Kim, H.; Kang, H. The impacts of excessive nitrogen additions on enzyme activities and nutrient leaching in two contrasting forest soils. J. Microbiol. 2011, 49, 369–375. [Google Scholar] [CrossRef]
- Kotas, P.; Choma, M.; Santruckova, H.; Leps, J.; Triska, J.; Kastovska, E. Linking above and belowground responses to 16 years of fertilization, mowing, and removal of the dominant species in a temperate grassland. Ecosystems 2017, 20, 354–367. [Google Scholar] [CrossRef]
- Wang, Y.S.; Cheng, S.L.; Yu, G.R.; Fang, H.J.; Mo, J.M.; Xu, M.J.; Gao, W.L. Response of carbon utilization and enzymatic activities to nitrogen deposition in three forests of subtropical China. Can. J. For. Res. 2015, 45, 394–401. [Google Scholar] [CrossRef]
- Yang, X.H.; Nie, C.R.; Mai, Z.M. Effect of acid rain on the main microbial strains of peanut soil in South China. J. Peanut Sci. 2004, 33, 26–29. [Google Scholar]
- Bergkvist, B.; Folkeson, L. Soil acidification and element fluxes of a Fagus sylvatica forest as influenced by simulated nitrogen deposition. Water Air Soil Pollut. 1992, 65, 111–133. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Jiang, H.; Li, Y.H.; Yuan, H.Y. Short-term effects of acid rain on soil respiration in broadleaf tree sapling-soil systems in bubtropical China. Acta Pedol. Sin. 2011, 48, 563–569. [Google Scholar]
- Wang, J.S.; Li, Y.; Quan, Q. Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow. Funct. Ecol. 2019. [Google Scholar] [CrossRef]
Indexes | Determination Method | References |
---|---|---|
pH | Using a pH meter (Orion, Thermo Fisher Scientific Inc., Beverly, MA, USA) at a 1-to-5 ratio of soil-to-deionized water | - |
TN, NO3−, NH4+ | Soil samples were extracted using a 2 mol L−1 KCl solution first (at 1-to-5 ratio of soil-to-KCl solution) and then measured by a continuous flow analyzer (AA3 Bran + Luebbe, Germany) | - |
TOC | potassium dichromate oxidation method | - |
DOC | Water extraction first (at a 1-to-10 ratio of soil-to-deionized water), filtered through a membrane filter with 0.45 µm pores, followed by determination via aa TOC analyzer (Vario TOC Cube, Elementar, Germany) | [48] |
DON | The difference between extractable N and available N (NO3− + NH4+) | - |
MBC, MBN | was determined by the chloroform fumigation-extraction method within a week after sampling. A 0.5 mol L−1 K2SO4 solution was used to extract C and N from fumigated and non-fumigated samples at a 1:10 (w/v) ratio, followed by determination via a TOC analyzer (Vario TOC Cube, Elementar, Germany) | [48] |
soil invertase activity | Sodium phenol colorimetry | [49] |
soil urease activity | 3,5-dinitrosalicylic acid colorimetry | [49] |
Rs | 0–5 cm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
pH | Soil Urease Activity | Soil Invertase Activity | TOC | NH4+ | NO3− | DOC | DON | MBC | MBN | ||
N | 0.000 ** | 0.003 ** | 0.004 ** | 0.209 | 0.373 | 0.898 | 0.055 | 0.999 | 0.260 | 0.849 | 0.756 |
A | 0.031 * | 0.005 ** | 0.000 ** | 0.545 | 0.427 | 0.496 | 0.914 | 0.999 | 0.980 | 0.146 | 0.978 |
N*A | 0.000 ** | 0.206 | 0.962 | 0.381 | 0.509 | 0.840 | 0.824 | 0.917 | 0.976 | 0.183 | 0.244 |
5–10 cm | |||||||||||
pH | Soil Urease Activity | Soil Invertase Activity | TOC | NH4+ | NO3− | DOC | DON | MBC | MBN | ||
N | 0.022 * | 0.018 * | 0.170 | 0.448 | 0.504 | 0.067 | 0.986 | 0.833 | 0.322 | 0.858 | |
A | 0.000 ** | 0.001 ** | 0.476 | 0.609 | 0.515 | 0.375 | 0.995 | 0.963 | 0.022 * | 0.151 | |
N*A | 0.018 * | 0.793 | 0.342 | 0.103 | 1.000 | 0.362 | 0.951 | 0.967 | 0.335 | 0.506 |
Soil Layer | Parameter | Treatment | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CK | LN | HN | LA | HA | LNLA | LNHA | HNLA | HNHA | ||
0~5 cm | TOC (g kg−1) | 32.1 ± 5.0 a | 30.8 ± 3.4 a | 33.5 ± 3.0 a | 30.9 ± 1.6 a | 27.3 ± 3.1 a | 33.0 ± 3.9 a | 32.5 ± 4.3 a | 25.0 ± 1.2 a | 26.2 ± 2.9 a |
NH4+ (mg kg−1) | 4.86 ± 0.66 a | 5.96 ± 2.02 a | 5.98 ± 0.87 a | 5.15 ± 1.58 a | 6.87 ± 1.47 a | 4.87 ± 0.61 a | 7.69 ± 2.66 a | 5.79 ± 1.24 a | 5.48 ± 1.32 a | |
NO3− (mg kg−1) | 17.39 ± 5.99 a | 28.42 ± 6.99 a | 34.10 ± 5.75 a | 21.23 ± 4.19 a | 19.39 ± 4.82 a | 28.18 ± 9.91 a | 31.73 ± 6.26 a | 25.18 ± 5.11 a | 28.51 ± 5.55 a | |
DOC (mg kg−1) | 174.01 ± 51.90 a | 196.29 ± 48.89 a | 225.33 ± 53.96 a | 215.26 ± 53.14 a | 209.29 ± 59.13 a | 190.63 ± 48.99 a | 214.02 ± 55.99 a | 194.08 ± 50.69 a | 175.50 ± 44.18 a | |
DON (mg kg−1) | 14.92 ± 3.23 a | 25.17 ± 8.24 a | 21.75 ± 6.90 a | 17.12 ± 3.42 a | 17.79 ± 3.71 a | 25.37 ± 9.78 a | 24.43 ± 8.54 a | 16.17 ± 3.80 a | 18.14 ± 6.28 a | |
MBC (mg kg−1) | 165.62 ± 29.21 ab | 153.57 ± 36.96 ab | 230.01 ± 33.81 a | 172.93 ± 29.22 ab | 147.54 ± 28.28 ab | 129.16 ± 29.27 b | 160.79 ± 32.44 ab | 115.13 ± 20.29 b | 114.65 ± 32.81 b | |
MBN (mg kg−1) | 52.99 ± 6.14 a | 64.11 ± 18.39 a | 80.75 ± 10.29 a | 75.65 ± 11.61 a | 76.49 ± 8.79 a | 58.76 ± 9.83 a | 62.67 ± 7.57 a | 58.96 ± 5.95 a | 59.54 ± 14.07 a | |
5~10 cm | TOC (g kg−1) | 22.6 ± 3.2 a | 17.5 ± 1.8 ab | 15.7 ± 1.9 b | 16.8 ± 1.7 ab | 15.9 ± 2.7 b | 17.9 ± 1.4 ab | 19.9 ± 2.6 ab | 19.0 ± 1.3 ab | 14.9 ± 1.1 b |
NH4+ (mg kg−1) | 5.14 ± 1.09 a | 7.45 ± 1.79 a | 6.73 ± 2.47 a | 6.32 ± 1.98 a | 7.42 ± 1.89 a | 8.16 ± 1.79 a | 9.71 ± 3.41 a | 7.91 ± 2.37 a | 8.69 ± 3.00 a | |
NO3− (mg kg−1) | 11.80 ± 2.04 a | 13.97 ± 4.15 a | 11.41 ± 4.26 a | 6.83 ± 2.41 ab | 1.43 ± 0.49 b | 9.91 ± 3.62 ab | 15.23 ± 5.19 a | 11.51 ± 2.96 a | 9.76 ± 2.35 ab | |
DOC (mg kg−1) | 183.51 ± 50.05 a | 152.49 ± 40.35 a | 157.21 ± 38.12 a | 164.21 ± 37.58 a | 150.70 ± 39.29 a | 152.81 ± 35.20 a | 176.57 ± 42.97 a | 175.09 ± 40.63 a | 157.25 ± 35.39 a | |
DON (mg kg−1) | 13.79 ± 3.45 a | 13.24 ± 3.16 a | 13.11 ± 2.63 a | 12.36 ± 2.23 a | 11.04 ± 2.34 a | 12.34 ± 2.44 a | 13.13 ± 3.34 a | 13.93 ± 2.60 a | 14.25 ± 2.77 a | |
MBC (mg kg−1) | 140.12 ± 26.95 a | 94.64 ± 23.72 ab | 98.16 ± 18.11 ab | 64.47 ± 10.19 b | 97.57 ± 19.53 ab | 54.43 ± 16.22 b | 90.46 ± 17.10 ab | 84.03 ± 21.94 b | 60.84 ± 9.10 b | |
MBN (mg kg−1) | 54.17 ± 9.11 a | 43.04 ± 9.42 ab | 39.99 ± 6.84 ab | 37.89 ± 7.88 ab | 29.86 ± 3.06 b | 30.70 ± 5.74 b | 38.20 ± 7.86 ab | 40.20 ± 6.69 ab | 36.31 ± 7.70 ab |
Rs | T5 | SWC | 0–5 cm | 5–10 cm | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | Soil Urease Activity | Soil Invertase Activity | TOC | NH4+ | NO3− | DOC | DON | MBC | MBC | pH | Soil Urease Activity | Soil Invertase Activity | TOC | NH4+ | NO3− | DOC | DON | MBC | MBN | |||||
Rs | 1.000 | 0.778 ** | −0.206 ** | 0.157 | 0.746 ** | 0.800 * | −0.302 * | −0.393 ** | −0.590 * | −0.430 * | −0.289 * | −0.209 | −0.141 | −0.205 | 0.726 ** | 0.793 ** | −0.080 | −0.463 ** | −0.226 | −0.330 ** | −0.199 | −0.058 | 0.025 | |
T5 | 1.000 | −0.247 ** | −0.031 | 0.657 ** | 0.777 ** | −0.356 ** | −0.487 ** | −0.545 ** | −0.612 ** | −0.330 ** | −0.312 ** | −0.081 | −0.321 ** | 0.671 ** | 0.752 ** | −0.188 | −0.526 ** | −0.314 ** | −0.597 ** | −0.402** | −0.208 | −0.110 | ||
SWC | 1.000 | −0.243 * | −0.501 ** | −0.294 * | −0.072 | 0.172 | 0.110 | 0.115 | −0.013 | −0.003 | −0.204 | −0.095 | −0.488 ** | −0.282 * | 0.158 | 0.138 | 0.129 | 0.202 | 0.196 | 0.164 | 0.147 | |||
0–5 cm | pH | 1.000 | 0.174 | 0.007 | 0.306 ** | −0.010 | −0.002 | 0.058 | 0.176 | 0.260* | 0.289 * | 0.562 ** | 0.179 | −0.003 | 0.176 | −0.206 | 0.125 | −0.001 | 0.089 | 0.278 * | 0.219 | |||
soil urease activity | 1.000 | 0.713 ** | −0.205 | −0.308 ** | −0.490 ** | −0.353 ** | −0.203 | −0.178 | −0.161 | 0.017 | 0.939 ** | 0.694 ** | −0.125 | −0.277 * | −0.246 * | −0.306 ** | −0.249 * | −0.057 | −0.120 | |||||
soil invertase activity | 1.000 | −0.321 ** | −0.486 ** | −0.491 ** | −0.412 ** | −0.223 | −0.351 ** | −0.071 | −0.174 | 0.744 ** | 0.986 ** | −0.177 | −0.326 ** | −0.256* | −0.367 ** | −0.294 * | −0.172 | −0.030 | ||||||
TOC | 1.000 | 0.139 | 0.488 ** | 0.191 | 0.295 * | 0.475 ** | 0.313 ** | 0.326 ** | −0.233 * | −0.331 ** | 0.56 ** | −0.121 | 0.314 ** | 0.071 | 0.124 | 0.242 * | 0.221 | |||||||
NH4+ | 1.000 | 0.335 ** | 0.442 ** | 0.302 ** | 0.241 * | 0.002 | 0.139 | −0.351 ** | −0.450 ** | 0.130 | 0.529 ** | 0.377 ** | 0.484 ** | 0.371 ** | 0.310 ** | 0.072 | ||||||||
NO3− | 1.000 | 0.495 ** | 0.481 ** | 0.402 ** | 0.372 ** | 0.141 | −0.498 ** | −0.490 ** | 0.301 * | 0.368 ** | 0.527 ** | 0.382 ** | 0.438 ** | 0.213 ** | 0.219 | |||||||||
DOC | 1.000 | 0.581 ** | 0.512 ** | 0.128 | 0.227 | −0.319 ** | −0.379 ** | 0.005 | 0.537 ** | 0.342 ** | 0.901 ** | 0.763 ** | 0.431 ** | 0.165 | ||||||||||
DON | 1.000 | 0.346 ** | 0.218 | 0.310 ** | −0.166 | −0.213 | 0.151 | 0.257 * | 0.522 ** | 0.483 ** | 0.549 ** | 0.295 * | 0.199 | |||||||||||
MBC | 1.000 | 0.272 * | 0.334 ** | −0.198 | −0.343 ** | 0.116 | 0.089 | 0.162 | 0.370 ** | 0.378 ** | 0.489 ** | 0.212 | ||||||||||||
MBN | 1.000 | 0.131 | −0.171 | −0.084 | 0.233 * | −0.071 | 0.256 * | −0.011 | 0.109 | 0.172 | 0.372 ** | |||||||||||||
5−10 cm | pH | 1.000 | 0.033 | −0.156 | 0.219 | −0.100 | 0.406 ** | 0.219 | 0.289 * | 0.398 ** | 0.383 ** | |||||||||||||
soil urease activity | 1.000 | 0.721 ** | −0.168 | −0.271 * | −0.258 * | −0.289 * | −0.222 | −0.086 | −0.128 | |||||||||||||||
soil invertase activity | 1.000 | −0.168 | −0.308 ** | −0.239 * | −0.334 ** | −0.293 ** | −0.161 | −0.021 | ||||||||||||||||
TOC | 1.000 | −0.202 | 0.436 ** | 0.057 | 0.114 | 0.365 ** | 0.556 ** | |||||||||||||||||
NH4+ | 1.000 | −0.027 | 0.595 ** | 0.332 ** | 0.012 | −0.219 | ||||||||||||||||||
NO3− | 1.000 | 0.382 ** | 0.486 ** | 0.408 ** | 0.542 ** | |||||||||||||||||||
DOC | 1.000 | 0.825 ** | 0.497 ** | 0.224 | ||||||||||||||||||||
DON | 1.000 | 0.521 ** | 0.271 * | |||||||||||||||||||||
MBC | 1.000 | 0.482 ** | ||||||||||||||||||||||
MBN | 1.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; Wang, G.G.; Tang, C.; Fang, H.; Duan, J.; Yu, X. Effects of One-Year Simulated Nitrogen and Acid Deposition on Soil Respiration in a Subtropical Plantation in China. Forests 2020, 11, 235. https://doi.org/10.3390/f11020235
Xiao S, Wang GG, Tang C, Fang H, Duan J, Yu X. Effects of One-Year Simulated Nitrogen and Acid Deposition on Soil Respiration in a Subtropical Plantation in China. Forests. 2020; 11(2):235. https://doi.org/10.3390/f11020235
Chicago/Turabian StyleXiao, Shengsheng, G. Geoff Wang, Chongjun Tang, Huanying Fang, Jian Duan, and Xiaofang Yu. 2020. "Effects of One-Year Simulated Nitrogen and Acid Deposition on Soil Respiration in a Subtropical Plantation in China" Forests 11, no. 2: 235. https://doi.org/10.3390/f11020235
APA StyleXiao, S., Wang, G. G., Tang, C., Fang, H., Duan, J., & Yu, X. (2020). Effects of One-Year Simulated Nitrogen and Acid Deposition on Soil Respiration in a Subtropical Plantation in China. Forests, 11(2), 235. https://doi.org/10.3390/f11020235