Effects of Underlay on Hill-Slope Surface Runoff Process of Cupressus funebris Endl. Plantations in Southwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Research Method
2.2.1. Runoff Plot Setting
2.2.2. Data Collection and Processing
2.3. Statistical Methods
3. Results
3.1. Typical Rainfall Events and Runoff Process in Runoff Plots
3.2. Impact of the Spatial Pattern of Cypress/Micro-Topography on Peak Flow
3.3. Coupling Effects of the Spatial Pattern of Cypress and Micro-Topography on Peak Flow under the Condition of Long-Duration Moderate Rainfall/Long-Duration Rainstorm
3.3.1. Correlation between the Composite Index of the Spatial Pattern Cypress/Micro-Topography and Peak Flow
3.3.2. Coupling Effects of the Spatial Pattern of Cypress and Micro-Topography on Peak Flow under the Condition of Long-Duration Moderate Rainfall/Long-Duration Rainstorm
4. Discussion
4.1. Interaction between the Spatial Pattern of Cypress and Micro-Topography
4.2. Differences in the Impact of Different Spatial Pattern of Cypress, Micro-Topography and Rainfall Conditions on Peak Flow
4.3. Strategies for the Adjustment of Vegetation Pattern on Slopes in Southwest Mountainous Areas
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No | Soil Depth/cm | Soil Bulk Density/(g/cm3) | Capillary Porosity/% | Non-Capillary Porosity/% | Total Porosity/% |
---|---|---|---|---|---|
I | 0–15 | 1.35 | 38.54 | 1.63 | 40.17 |
15–25 | 1.49 | 42.34 | 3.28 | 45.61 | |
II | 0–15 | 1.38 | 39.86 | 2.26 | 42.12 |
15–25 | 1.47 | 38.55 | 1.93 | 40.48 | |
III | 0–15 | 1.41 | 41.82 | 3.31 | 45.13 |
15–25 | 1.50 | 40.69 | 2.50 | 43.20 | |
IV | 0–15 | 1.31 | 42.55 | 2.56 | 45.11 |
15–25 | 1.50 | 42.46 | 2.05 | 44.51 | |
V | 0–15 | 1.31 | 42.77 | 3.71 | 46.48 |
15–25 | 1.45 | 41.60 | 3.86 | 45.46 | |
VI | 0–15 | 1.36 | 41.65 | 2.69 | 44.34 |
15–25 | 1.54 | 38.69 | 2.19 | 40.88 |
Appendix B
Time | Infiltration Rate/(mm/min) | |||||
---|---|---|---|---|---|---|
I | II | III | IV | V | VI | |
0 min–1 min | 0.25 | 0.30 | 0.45 | 0.25 | 0.20 | 0.35 |
1 min–2 min | 0.2 | 0.28 | 0.20 | 0.15 | 0.15 | 0.20 |
2 min–3 min | 0.20 | 0.25 | 0.20 | 0.15 | 0.15 | 0.15 |
3 min–4 min | 0.20 | 0.25 | 0.20 | 0.10 | 0.15 | 0.15 |
4 min–5 min | 0.20 | 0.25 | 0.15 | 0.10 | 0.18 | 0.15 |
5 min–6 min | 0.15 | 0.25 | 0.15 | 0.09 | 0.16 | 0.15 |
6 min–7 min | 0.15 | 0.25 | 0.10 | 0.09 | 0.15 | 0.10 |
7 min–8 min | 0.10 | 0.20 | 0.10 | 0.10 | 0.10 | 0.10 |
8 min–9 min | 0.10 | 0.20 | 0.08 | 0.10 | 0.10 | 0.10 |
9 min–10 min | 0.10 | 0.15 | 0.08 | 0.10 | 0.10 | 0.10 |
10 min–15 min | 0.10 | 0.18 | 0.08 | 0.10 | 0.09 | 0.09 |
15 min–20 min | 0.11 | 0.19 | 0.10 | 0.09 | 0.08 | 0.09 |
20 min–25 min | 0.10 | 0.12 | 0.10 | 0.11 | 0.08 | 0.09 |
25 min–30 min | 0.10 | 0.12 | 0.10 | 0.08 | 0.08 | 0.09 |
30 min–35 min | 0.10 | 0.12 | 0.09 | 0.08 | 0.08 | 0.09 |
35 min–40 min | 0.10 | 0.12 | 0.10 | 0.08 | 0.08 | 0.09 |
Appendix C
Appendix D
No | Average Crown Width of Cypress/(m × m) | Average Height of Cypress/m | Average DBH of Cypress/cm | Surface Vegetation Coverage/% | Soil Thickness/cm | The Relative Height Difference of Runoff Plots/m | Bedrock Exposure Rate/% | Topographic Relief/m | Surface Roughness | Surface Cutting Depth/cm | Runoff Path Density/(m/100m2) | L(r) Index of Cypress | Contagion Index of Cypress | Stand Density of Cypress/(plants/100 m2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.8 × 1.0 | 2.32 | 2.78 | 58.8 | 24.5 | 8.1 | 0 | 1.54 | 1.72 | 5.94 | 8.02 | 0.16 | 0.43 | 36 |
2 | 0.8 × 0.9 | 2.12 | 2.73 | 58.2 | 22.5 | 8.13 | 0 | 1.31 | 1.73 | 7.43 | 8.08 | 0.19 | 0.6 | 68 |
3 | 0.8 × 0.8 | 2.83 | 2.68 | 55 | 23.4 | 8.17 | 0.93 | 1.36 | 1.21 | 6.94 | 10.08 | −0.05 | 0.53 | 32 |
4 | 0.9 × 1.0 | 2.69 | 3.09 | 57.4 | 24.5 | 8.44 | 0.14 | 1.71 | 1.31 | 10.76 | 9.62 | 0.22 | 0.45 | 36 |
5 | 0.8 × 0.9 | 2.46 | 2.32 | 52 | 23.6 | 8.03 | 0.76 | 1.56 | 1.45 | 6.32 | 7.52 | 0.03 | 0.47 | 70 |
6 | 0.9 × 1.0 | 2.76 | 3.04 | 57.1 | 23.8 | 8.22 | 0.83 | 1.31 | 1.62 | 8.73 | 6.96 | 0.26 | 0.64 | 54 |
7 | 0.9 × 1.0 | 2.72 | 2.45 | 55.8 | 21.8 | 8.12 | 0 | 1.44 | 1.35 | 10.32 | 11.22 | 0.08 | 0.42 | 28 |
8 | 0.9 × 1.1 | 2.4 | 3.02 | 53.5 | 25.3 | 8.32 | 0.93 | 1.39 | 1.61 | 6.95 | 9.92 | −0.13 | 0.54 | 66 |
9 | 0.8 × 0.9 | 2.54 | 3.15 | 59.2 | 22 | 8.03 | 0.75 | 1.51 | 1.65 | 3.49 | 7.9 | 0.03 | 0.4 | 34 |
10 | 0.8 × 1.0 | 2.91 | 2.65 | 58.4 | 22.1 | 8.33 | 0.63 | 1.54 | 1.23 | 8.71 | 9.64 | 0.22 | 0.48 | 22 |
11 | 0.8 × 0.8 | 2.42 | 2.84 | 57.2 | 23.6 | 8.13 | 0.26 | 1.37 | 1.15 | 5.74 | 8.4 | 0.26 | 0.69 | 6 |
12 | 0.8 × 0.8 | 2.66 | 2.73 | 59.6 | 22.8 | 8.05 | 0 | 1.31 | 1.19 | 5.46 | 8.22 | 0.28 | 0/72 | 10 |
13 | 0.9 × 1.0 | 2.52 | 2.78 | 52.1 | 22.4 | 8.19 | 6.85 | 1.36 | 1.61 | 6.76 | 10.32 | 0.18 | 0.56 | 52 |
Appendix E
Variables | Mean Square | F | Significance |
---|---|---|---|
Average crown width of Cupressus funebris | 0.007 | 0.482 | 0.637 |
Average height of Cupressus funebris | 0.098 | 1.858 | 0.225 |
Average DBH of Cupressus funebris | 0.094 | 1.275 | 0.337 |
Surface vegetation coverage | 6.152 | 1.079 | 0.391 |
Soil thickness | 2.490 | 2.114 | 0.191 |
The relative height difference | 0.002 | 0.073 | 0.930 |
Bedrock exposure rate | 0.072 | 0.370 | 0.703 |
Appendix F
Appendix G
Rainfall Event | Rainfall Intensity/mm/h | Rainfall Duration/h | Maximum 1 h Rainfall Intensity/mm/h | Remarks |
---|---|---|---|---|
15 June 2019 | 0.6 | 16.2 | 3.6 | No runoff data appeared |
22 June 2019 | 0.7 | 33.7 | 6.6 | |
25 June 2019 | 1.8 | 6.0 | 3.6 | |
3 July 2019 | 0.9 | 19.8 | 2.6 | |
8 July 2019 | 1.5 | 9.2 | 3.6 | |
12 July 2019 | 0.8 | 13.5 | 5.4 | |
15 July 2019 | 0.7 | 5.8 | 3.0 | |
18 July 2019 | 1.4 | 11.8 | 4.8 | |
6 September 2019 | 3.7 | 2.7 | 6.6 | |
8 September 2019 | 0.8 | 11.8 | 5.8 | |
9 September 2019 | 0.9 | 4.3 | 0.8 | |
18 September 2019 | 0.8 | 22.7 | 2.6 | |
19 July 2019 | 4.6 | 2.8 | 7.2 | Runoff data appeared but no obvious peak flow |
22 July 2019 | 11.2 | 0.8 | 9.0 | |
6 August 2019 | 1.4 | 19.2 | 5.2 | Runoff data appeared, but there were no significant differences of the peak flow among each runoff plot because of the influence of previous rainfall events |
8 August 2019 | 29.9 | 1.8 | 52.2 | |
9 August 2019 | 7.3 | 2.5 | 14.7 | |
9 June 2019 | 2.0 | 17.0 | 18.4 | Typical long-duration moderate rainfall |
28 June 2019 | 2.5 | 22.2 | 24.8 | Typical long-duration rainstorm |
4 August 2019 | 30.0 | 1.7 | 49.4 | Typical short-duration rainstorm |
Appendix H
Peak Flow | Composite Index of Topography | Composite Index of the Spatial Pattern of Cypress (Cupressus funebris) |
---|---|---|
Peak flow(Long-duration moderate rainfall) | 0.929 ** | −0.758 * |
Peak flow(Long-duration rainstorm) | 0.857 ** | −0.816 ** |
Appendix I
Response Surface Area | Rainfall Conditions | Composite Index of Topography | Composite Index of the Spatial Pattern of Cypress | Topographic Relief/m | Surface Roughness | Runoff Path Density/(m/100 m2) | Contagion Index of Cypress | Stand Density of Cypress/(Plants/100 m2) |
---|---|---|---|---|---|---|---|---|
I | Long-duration moderate rainfall | 5.5–10.5 | 10–22.5 | 1.51–1.54 | 1.65–1.72 | 7.9–8.02 | 0.4–0.43 | 34–36 |
Long-duration rainstorm | 5.5–12.5 | 10–20.5 | 1.36–1.71 | 1.21–1.72 | 7.9–11.22 | 0.4–0.53 | 22–36 | |
II | Long-duration moderate rainfall | 7.5–12.5 | 10–31 | 1.36–1.71 | 1.21–1.72 | 8.02–11.22 | 0.42–0.53 | 22–36 |
Long-duration rainstorm | 9–12.5 | 10–41 | 1.36–1.71 | 1.21–1.35 | 9.62–11.22 | 0.42–0.53 | 22–36 | |
III | Long-duration moderate rainfall | 5.5–7.5 | 18–41 | 1.31–1.56 | 1.45–1.62 | 6.96–7.52 | 0.47–0.64 | 54–70 |
Long-duration rainstorm | 5.5–9 | 15–41 | 1.31–1.56 | 1.45–1.73 | 6.96–9.92 | 0.4–0.64 | 34–70 | |
IV | Long-duration moderate rainfall | 5.5–12.5 | 22.5–41 | 1.31–1.56 | 1.45–1.73 | 6.96–9.92 | 0.47–0.64 | 54–70 |
Long-duration rainstorm | 5.5–12.5 | 20.5–41 | 1.31–1.56 | 1.45–1.73 | 6.96–9.92 | 0.47–0.64 | 54–70 |
References
- Xu, C.; Yang, Z.; Qian, W.; Chen, S.; Liu, X.; Lin, W.; Xiong, D.; Jiang, M.; Chang, C.T.; Huang, J.C.; et al. Runoff and soil erosion responses to rainfall and vegetation cover under various afforestation management in subtropical montane forest. Land Degrad. Dev. 2019, 30, 1711–1724. [Google Scholar] [CrossRef]
- González-Arqueros, M.L.; Navarette-Segueda, A.; Mendoza, M.E. Modeling biophysical and anthropogenic effects on soil erosion over the last 2,000 years in central Mexico. Land Degrad. Dev. 2018, 29, 1885–1895. [Google Scholar] [CrossRef]
- Ochoa, P.A.; Fries, A.; Mejía, D.; Burneo, J.I.; Ruíz-Sinoge, J.D.; Cerdà, A. Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena 2016, 140, 31–42. [Google Scholar] [CrossRef]
- El Kateb, H.; Zhang, H.; Zhang, P.; Mosandl, R. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. Catena 2013, 105, 1–10. [Google Scholar] [CrossRef]
- Burylo, M.; Rey, F.; Bochet, E.; Dutoit, T. Plant functional traits and species ability for sediment retention during concentrated flow erosion. Plant Soil 2012, 353, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Appels, W.M.; Bogaart, P.W.; van der Zee, S.E. Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity. J. Hydrol. 2016, 534, 493–504. [Google Scholar] [CrossRef]
- Mamedov, A.I.; Levy, G.J.; Shainberg, I.; Letey, J. Wetting rate, sodicity, and soil texture effects on infiltration rate and runoff. Soil Res. 2001, 39, 1293–1305. [Google Scholar] [CrossRef]
- Duan, L.; Huang, M.; Zhang, L. Differences in hydrological responses for different vegetation types on a steep slope on the Loess Plateau, China. J. Hydrol. 2016, 537, 356–366. [Google Scholar] [CrossRef]
- Boer, M.; Puigdefábregas, J. Effects of spatially structured vegetation patterns on hillslope erosion in a semiarid Mediterranean environment: A simulation study. Earth Surf. Process. Landf. 2010, 30, 149–167. [Google Scholar] [CrossRef]
- Hou, G.R.; Bi, H.X.; Huo, Y.M.; Wei, X.; Zhu, Y.; Wang, X.; Liao, W. Determining the optimal vegetation coverage for controlling soil erosion in Cynodon dactylon grassland in North China. J. Clean. Prod. 2020, 244, 118771. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, Y.; Xu, S.; Ji, X.; Wang, S.; Ding, S. Relationships between riparian vegetation pattern and the hydraulic characteristics of upslope runoff. Sustainability 2019, 11, 2966. [Google Scholar] [CrossRef] [Green Version]
- Puigdefábregas, J. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surf. Process. Landf. 2010, 30, 133–147. [Google Scholar] [CrossRef]
- Fu, B.J.; Zhao, W.W.; Chen, L.D.; Liu, Z.F.; Lu, Y.H. Eco-hydrological effects of landscape pattern change. Landsc. Ecol. Eng. 2005, 1, 25–32. [Google Scholar] [CrossRef]
- Bautista, S.; Mayor, A.G.; Bourakhouadar, J.; Bellot, Y. Plant spatial pattern predicts hillslope runoff and erosion in a semiarid Mediterranean landscape. Ecosystems 2007, 10, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Liu, G.; Liang, Y.; Zhang, P.C. Effects of patterned Artemisia capillaris on overland flow resistance under varied rainfall intensities in the Loess Plateau of China. J. Hydrol. Hydromech. 2014, 62, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.P.; Zhang, H.L.; Wang, Y.J.; Wang, Y.Q.; Wang, B.; Liu, Y.D. Impact of spatial configuration mode of rigid vegetation on overland flow dynamics. J. Soil Water Conserv. 2015, 29, 90–95. (In Chinese) [Google Scholar]
- Ito, H.; Ito, S.; Matsuda, A.; Mitsuda, Y.; Buckley, G.P. The effect of micro-topography on habitat segregation and tree species diversity in a warm temperate evergreen broadleaved secondary forest in southern Kyushu, Japan. Veg. Sci. 2017, 24, 171–182. [Google Scholar]
- Efe, R. Ecological properties of vegetation formations on karst terrains in the central Taurus Mountains (Southern Turkey). Proc. Soc. Behav. Sci. 2014, 120, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Hu, F.; Zeng, F.; Wang, K.; Peng, W.; Zhang, H.; Zeng, Z.; Zhang, F.; Song, T. Spatial distribution of tree species in evergreen-deciduous broadleaf karst forests in southwest China. Sci. Rep. 2017, 7, 15664. [Google Scholar] [CrossRef] [Green Version]
- Székely, B.; Telbisz, T.; Koma, Z.; Kelemen, K.; Szmorad, F.; Deák, M.; Látos, T.; Standovár, T. Geomorphometric correlations of vegetation cover properties and topographic karst features based on high-resolution LiDAR DTM of Aggtelek Karst, NE Hungary. In Proceedings of the Egu General Assembly Conference, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Miliša, M.; Belančic, A.; Kepčija, R.M.; Perić, M.S. Calcite deposition in karst waters is promoted by leaf litter breakdown and vice versa. Int. J. Limnol. 2015, 46, 225–232. [Google Scholar] [CrossRef]
- Saco, P.M.; Mariano, M.D.L.H. Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resour. Res. 2013, 49, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Kupfer, J.A. Tri-variate relationships among vegetation, soil, and topography along gradients of fluvial biogeomorphic succession. PLoS ONE 2016, 11, e0163223. [Google Scholar] [CrossRef]
- Slattery, M.C.; Burt, T.P. Particle size characteristics of suspended sediment in hillslope runoff and stream flow. Earth Surf. Process. Landf. 2015, 22, 705–719. [Google Scholar] [CrossRef]
- Meerveld, T.V.; Mcdonnell, J.J. Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope. Water Resour. Res. 2006, 42, W02410. [Google Scholar]
- Ayalew, T.B.; Krajewski, W.F.; Mantilla, R.; Small, S.J. Exploring the effects of hillslope-channel link dynamics and excess rainfall properties on the scaling structure of peak-discharge. Adv. Water Resour. 2014, 64, 9–20. [Google Scholar] [CrossRef]
- Febles-Gonzalez, J.M.; Vega-Carreno, M.B.; Tolon-Becerra, A.; Lastra-Bravo, X. Assessment of soil erosion in karst regions of Havana, Cuba. Land Degrad. Dev. 2011, 23, 465–474. [Google Scholar] [CrossRef]
- Bai, X.Y.; Wang, S.J.; Xiong, K.N. Assessing spatial-temporal evolution processes of karst rocky desertification land: Indications for restoration strategies. Land Degrad. Dev. 2012, 24, 47–56. [Google Scholar] [CrossRef]
- Dai, Q.H.; Peng, X.D.; Wang, P.J.; Li, C.; Shao, H. Surface erosion and underground leakage of yellow soil on slopes in karst regions of southwest China. Land Degrad. Dev. 2018, 29, 2438–2448. [Google Scholar] [CrossRef]
- Dai, Q.H.; Liu, Z.; Shao, H. Karst bare slope soil erosion and soil quality: A simulation case study. Solid Earth 2015, 6, 985–995. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.H.; Peng, X.D.; Zhao, L.S.; Shao, H.; Yang, Z. Effects of underground pore fissures on soil erosion and sediment yield on Karst slopes. Land Degrad. Dev. 2017, 28, 1922–1932. [Google Scholar] [CrossRef]
- Nunes, F.C.; Delunel, R.; Schlunegger, F.; Akçar, N. Bedrock bedding, landsliding and erosional budgets in the Central European Alps. Terra Nova 2015, 27, 370–378. [Google Scholar] [CrossRef]
- Ripley, B.D. Modeling spatial patterns. J. R. State Soc. Ser. B 1977, 9, 178–212. [Google Scholar]
- Pommerening, A. Approaches to quantifying forest structures. Forestry 2002, 75, 305–324. [Google Scholar] [CrossRef]
- Aguirre, O.; Hui, G.; Gadow, K.V.; Jiménez, J. An analysis of spatial forest structure using neighbourhood-based variables. For. Ecol. Manag. 2003, 183, 137–145. [Google Scholar] [CrossRef]
- Besag, J.E. Contribution to the discussion on Dr. Ripley’s paper. J. R. Stat. Soc. Ser. 1977, 39, 193–195. [Google Scholar]
- Zhang, X.R.; Dong, K. Neighborhood analysis-based calculation and analysis of multi-scales relief amplitude. Adv. Mater. Res. 2012, 468–471, 2086–2089. [Google Scholar] [CrossRef]
- Romkens, M.J.M.; Helming, K.; Prasad, S.N. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena 2002, 46, 103–123. [Google Scholar] [CrossRef]
- He, J.J.; Sun, L.Y.; Gong, H.L.; Cai, Q.G.; Jia, L.J. The characteristics of rill development and their effects on runoff and sediment yield under different slope gradients. J. Mt. Sci. 2016, 13, 397–404. [Google Scholar] [CrossRef]
- Zhao, J.L.; Govers, G. Variations in vegetation cover and topography control gully density and sediment production on the Chinese Loess Plateau. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Vazquez, E.V.; Moreno, R.G.; Miranda, J.M.; Díaz, C. Assessing soil surface roughness decay during simulated rainfall by multifractal analysis. Nonlinear Process. Geophys. 2008, 15, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Herlina, H.; Ravi, P.; Anggoro, S.E.W.; Asdak, C. Factors affecting runoff and soil erosion: Plot-level soil loss monitoring for assessing sustainability of forest management. For. Ecol. Manag. 2003, 180, 361–374. [Google Scholar]
- Stefan, G.; Heike, G.; Frede, H.G. Soil Surface Roughness as the Result of Aggregate Size Distribution 2. Report: Change in aggregate size classes caused by erosive rainfalls. J. Plant Nutr. Soil Sci. 2010, 158, 37–41. [Google Scholar]
- Janeau, J.L.; Grellier, S.; Podwojewski, P. Influence of rainfall interception by endemic plants versus short cycle crops on water infiltration in high altitude ecosystems of Ecuador. Hydrol. Res. 2015, 46, 1008–1018. [Google Scholar] [CrossRef]
- Zhang, H.X.; Wu, H.W.; Li, J.; He, B.; Liu, J.F.; Wang, N.; Duan, W.L.; Liao, A.M. Spatial-temporal variability of throughfall in a subtropical deciduous forest from the hilly regions of eastern China. J. Mt. Sci. 2019, 16, 1788–1801. [Google Scholar] [CrossRef]
- Moreno, R.G.; Álvarez, M.C.D.; Tarquis, A.M.; Barrington, S. Tillage and soil type effects on soil surface roughness at semiarid climatic conditions. Soil Tillage Res. 2008, 98, 35–44. [Google Scholar] [CrossRef]
- Song, S.S.; Li, H.X.; Zhang, J.G. Micro-topographic structures study of individual plants on Loss Plateau. J. Mt. Res. 2003, 21, 106–109. (In Chinese) [Google Scholar]
- Ding, W.; Huang, C. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution. Geomorphology 2017, 295, 801–810. [Google Scholar] [CrossRef]
- Imeson, A.C.; Prinsen, H.A.M. Vegetation patterns as biological indicators for identifying runoff and sediment source and sink areas for semi-arid landscapes in Spain. Agric. Ecosyst. Environ. 2004, 104, 333–342. [Google Scholar] [CrossRef]
- Vandenbruwaene, W.; Temmerman, S.; Bouma, T.J.; Klaassen, P.C.; de Vries, M.B.; Callaghan, D.P.; van Steeg, P.; Dekker, R.; van Duren, L.A.; Martini, E.; et al. Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape. J. Geophys. Res. Earth Surf. 2011, 116, F01008. [Google Scholar] [CrossRef] [Green Version]
- Harman, C.J.; Lohse, K.A.; Troch, P.A.; Sivapalan, M. Spatial patterns of vegetation, soils, and microtopography from terrestrial laser scanning on two semiarid hillslopes of contrasting lithology. J. Geophys. Res. Biogeosci. 2014, 119, 163–180. [Google Scholar] [CrossRef]
- Bochet, E.; Poesen, J.; Rubio, J.L. Mound development as an interaction of individual plants with soil, water erosion and sedimentation processes on slopes. Earth Surf. Process. Landf. 2015, 25, 847–867. [Google Scholar] [CrossRef]
- Lan, G.; Hu, Y.; Cao, M.; Zhu, H. Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. For. Ecol. Manag. 2011, 262, 1507–1513. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Zhu, Q.K.; Zhang, Q.N.; Ma, H.; Huang, Z.J. Effect of slope micro-topography on spatial distribution of trees in Loess Area of north Shaanxi Province, China. For. Res. 2016, 29, 389–394. (In Chinese) [Google Scholar]
- Govers, G.; Takken, I.; Helming, K. Soil roughness and overland flow. Agronomie 2000, 20, 131–146. [Google Scholar] [CrossRef]
- Liu, B.; Wang, D.; Fu, S.; Cao, W. Estimation of Peak Flow Rates for Small Drainage Areas. Water Res. Manag. 2017, 31, 1635–1647. [Google Scholar] [CrossRef]
- Zheng, Z.C.; He, S.Q.; Wu, F.Q. Changes of soil surface roughness under water erosion process. Hydrol. Process. 2014, 28, 1–11. [Google Scholar] [CrossRef]
- Darboux, F.; Gascuelodoux, C.; Davy, P. Effects of surface water storage by soil roughness on overland-flow generation. Earth Surf. Process. Landf. 2010, 27, 223–233. [Google Scholar] [CrossRef]
- Patin, J.; Mouche, E.; Ribolzi, O.; Sengtahevanghoung, O.; Latsachak, K.O.; Soulileuth, B.; Chaplot, V.; Valentin, C. Effect of land use on interrill erosion in a montane catchment of Northern Laos: An analysis based on a pluri-annual runoff and soil loss database. J. Hydrol. 2018, 563, 480–494. [Google Scholar] [CrossRef]
- Nicosia, A.; Stefano, C.D.; Pampalone, V.; Palmeri, V.; Ferro, V.; Nearing, M.A. Testing a theoretical resistance law for overland flow on a stony hillslope. Hydrol. Process. 2020, 34, 2048–2056. [Google Scholar] [CrossRef]
- Zehe, E.; Ehret, U.; Blume, T.; Kleidon, A.; Scherer, U.; Westhoff, M. A thermodynamic approach to link self-organization, preferential flow and rainfall–runoff behavior. Hydrol. Earth Syst. Sci. 2013, 17, 4297–4322. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.S.; Cheng, C.C.; Xie, Y.; Liu, B.Y.; Yin, S.Q.; Liu, Y.N.; Hao, Y.F. Increasing trends in rainfall-runoff erosivity in the Source Region of the Three Rivers, 1961–2012. Sci. Total Environ. 2017, 592, 639–648. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, W.; Chen, L.D.; Feng, T.J.; Daryanto, S. Quantifying the effects of precipitation, vegetation, and land preparation techniques on runoff and soil erosion in a Loess watershed of China. Sci. Total Environ. 2019, 652, 755–764. [Google Scholar] [CrossRef] [PubMed]
Rainfall Characteristics | Peak Flow Coefficient | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Long-duration moderate rainfall | 0.219 | 0.240 | 0.141 | 0.164 | 0.257 | 0.138 | 0.150 | 0.089 | 0.141 | 0.087 |
Long-duration rainstorm | 0.230 | 0.239 | 0.224 | 0.235 | 0.282 | 0.190 | 0.202 | 0.117 | 0.175 | 0.138 |
Short-duration rainstorm | 0.316 | 0.340 | 0.342 | 0.324 | 0.514 | 0.293 | 0.422 | 0.307 | 0.369 | 0.354 |
Topographic Relief | Surface Roughness | Surface Cutting Depth | Runoff Path Density | L(d) Index of Cypress | Contagion Index of Cypress | Stand Density of Cypress | Peak Flow (Long-Duration Moderate Rainfall) | Peak Flow (Long-Duration Rainstorm) | |
---|---|---|---|---|---|---|---|---|---|
Surface roughness | −0.328 | ||||||||
Surface cutting depth | 0.132 | −0.513 | |||||||
Runoff path density | 0.101 | −0.645 * | 0.496 | ||||||
L(d) index of cypress | 0.186 | 0.052 | 0.455 | −0.345 | |||||
Contagion index of cypress | −0.737 * | 0.228 | 0.169 | −0.316 | 0.170 | ||||
Stand density of cypress | −0.358 | 0.547 * | −0.202 | −0.486 | −0.208 | 0.559 | |||
Peak flow (Long-duration moderate rainfall) | 0.685 * | −0.744 * | 0.571 | 0.736 * | 0.080 | −0.647 * | −0.691 * | ||
Peak flow (Long-duration rainstorm) | 0.693 * | −0.656 * | 0.237 | 0.689 * | −0.157 | −0.749 * | −0.717 * | 0.898 ** | |
Peak flow (Short-duration rainstorm) | 0.760 * | −0.073 | 0.275 | −0.025 | 0.389 | −0.421 | −0.161 | 0.455 | 0.481 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Qi, S. Effects of Underlay on Hill-Slope Surface Runoff Process of Cupressus funebris Endl. Plantations in Southwestern China. Forests 2021, 12, 644. https://doi.org/10.3390/f12050644
Wu B, Qi S. Effects of Underlay on Hill-Slope Surface Runoff Process of Cupressus funebris Endl. Plantations in Southwestern China. Forests. 2021; 12(5):644. https://doi.org/10.3390/f12050644
Chicago/Turabian StyleWu, Bingchen, and Shi Qi. 2021. "Effects of Underlay on Hill-Slope Surface Runoff Process of Cupressus funebris Endl. Plantations in Southwestern China" Forests 12, no. 5: 644. https://doi.org/10.3390/f12050644
APA StyleWu, B., & Qi, S. (2021). Effects of Underlay on Hill-Slope Surface Runoff Process of Cupressus funebris Endl. Plantations in Southwestern China. Forests, 12(5), 644. https://doi.org/10.3390/f12050644