Hydrological Response of Burned Soils in Croplands, and Pine and Oak Forests in Zagros Forest Ecosystem (Western Iran) under Rainfall Simulations at Micro-Plot Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Runoff Water and Sediments Measurements
- In the study area, three experimental sites (one for each land use) were selected: a natural stand of oak (hereafter indicated by “NO”), with trees having a mean diameter breast height (DBH) of 10 cm and litter with a mean depth of 4 cm;
- A plantation of Pinus eldarica on an ancient oak forest (“Pp/O”) at a spacing of 4 × 5 m (trees with mean DBH of 12 cm and litter with mean depth of 1.50 cm);
- An agro-forest stand, consisting of a cropland on the same ancient oak forest (“C/O”), which is a rainfed wheat farming, covered by debris and dry weeds.
2.3. Runoff and Erosion Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heydari, M.; Moradizadeh, H.; Omidipour, R.; Mezbani, A.; Pothier, D. Spatio-temporal Changes in the Understory Heterogeneity, Diversity, and Composition after Fires of Different Severities in a Semiarid Oak (Quercus Brantii Lindl.) Forest. Land Degrad. Dev. 2020, 31, 1039–1049. [Google Scholar] [CrossRef]
- Pereira, P.; Francos, M.; Brevik, E.C.; Ubeda, X.; Bogunovic, I. Post-Fire Soil Management. Curr. Opin. Environ. Sci. Health 2018, 5, 26–32. [Google Scholar] [CrossRef]
- Pierson, F.B.; Robichaud, P.R.; Spaeth, K.E. Spatial and Temporal Effects of Wildfire on the Hydrology of a Steep Rangeland Watershed. Hydrol. Process. 2001, 15, 2905–2916. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current Research Issues Related to Post-Wildfire Runoff and Erosion Processes. Earth-Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-Wildfire Soil Erosion in the Mediterranean: Review and Future Research Directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Heydari, M.; Omidipour, R.; Abedi, M.; Baskin, C. Effects of Fire Disturbance on Alpha and Beta Diversity and on Beta Diversity Components of Soil Seed Banks and Aboveground Vegetation. Plant Ecol. Evol. 2017, 150, 247–256. [Google Scholar] [CrossRef]
- Zavala, L.M.; De Celis, R.; Jordán, A. How Wildfires Affect Soil Properties. A Brief Review. Cuad. Investig. Geográfica 2014, 40, 311. [Google Scholar] [CrossRef] [Green Version]
- Glenn, N.F.; Finley, C.D. Fire and Vegetation Type Effects on Soil Hydrophobicity and Infiltration in the Sagebrush-Steppe: I. Field Analysis. J. Arid Environ. 2010, 74, 653–659. [Google Scholar] [CrossRef]
- Zema, D.A. Postfire Management Impacts on Soil Hydrology. Curr. Opin. Environ. Sci. Health 2021, 21, 100252. [Google Scholar] [CrossRef]
- Inbar, A.; Lado, M.; Sternberg, M.; Tenau, H.; Ben-Hur, M. Forest Fire Effects on Soil Chemical and Physicochemical Properties, Infiltration, Runoff, and Erosion in a Semiarid Mediterranean Region. Geoderma 2014, 221–222, 131–138. [Google Scholar] [CrossRef]
- DeBano, L.F. Water Repellent Soils: A State-of-the-Art; US Department of Agriculture, USDA Forest Service, Pacific Southwest Region: Vallejo, CA, USA, 1981; Volume 46. [Google Scholar]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of Prescribed Fires on Soil Properties: A Review. Sci. Total Environ. 2018, 613, 944–957. [Google Scholar] [CrossRef]
- Shakesby, R.; Doerr, S. Wildfire as a Hydrological and Geomorphological Agent. Earth-Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Waldrop, T.A. A comparison of surface runoff and sediment yields from low-and high-severity site preparation burns 1. JAWRA J. Am. Water Resour. Assoc. 1994, 30, 27–34. [Google Scholar] [CrossRef]
- Zema, D.A.; Nunes, J.P.; Lucas-Borja, M.E. Improvement of Seasonal Runoff and Soil Loss Predictions by the MMF (Morgan-Morgan-Finney) Model after Wildfire and Soil Treatment in Mediterranean Forest Ecosystems. Catena 2020, 188, 104415. [Google Scholar] [CrossRef]
- Zema, D.A.; Plaza-Alvarez, P.A.; Xu, X.; Carra, B.G.; Lucas-Borja, M.E. Influence of Forest Stand Age on Soil Water Repellency and Hydraulic Conductivity in the Mediterranean Environment. Sci. Total Environ. 2021, 753, 142006. [Google Scholar] [CrossRef]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. Surface Runoff and Erosion after Prescribed Burning and the Effect of Different Fire Regimes in Forests and Shrublands: A Review. Int. J. Wildland Fire 2012, 21, 857. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Bombino, G.; Carrà, B.G.; D’Agostino, D.; Denisi, P.; Labate, A.; Plaza-Alvarez, P.A.; Zema, D.A. Modeling the Soil Response to Rainstorms after Wildfire and Prescribed Fire in Mediterranean Forests. Climate 2020, 8, 150. [Google Scholar] [CrossRef]
- Prats, S.; Abrantes, J.; Crema, I.P.; Keizer, J.J.; Pedroso de Lima, J. Testing the Effectiveness of Three Forest Residue Mulch Application Schemes for Reducing Post-Fire Runoff and Soil Erosion Using Indoor Simulated Rain. Flamma 2015, 6, 113–116. [Google Scholar]
- Lopes, A.R.; Girona-García, A.; Corticeiro, S.; Martins, R.; Keizer, J.J.; Vieira, D.C.S. What Is Wrong with Post-fire Soil Erosion Modelling? A Meta-analysis on Current Approaches, Research Gaps, and Future Directions. Earth Surf. Process. Landf. 2021, 46, 205–219. [Google Scholar] [CrossRef]
- Benavides-Solorio, J.; MacDonald, L.H. Post-fire Runoff and Erosion from Simulated Rainfall on Small Plots, Colorado Front Range. Hydrol. Process. 2001, 15, 2931–2952. [Google Scholar] [CrossRef]
- Sheridan, G.J.; Lane, P.N.; Noske, P.J. Quantification of Hillslope Runoff and Erosion Processes before and after Wildfire in a Wet Eucalyptus Forest. J. Hydrol. 2007, 343, 12–28. [Google Scholar] [CrossRef]
- Hosseini, M.; Keizer, J.J.; Pelayo, O.G.; Prats, S.A.; Ritsema, C.; Geissen, V. Effect of Fire Frequency on Runoff, Soil Erosion, and Loss of Organic Matter at the Micro-Plot Scale in North-Central Portugal. Geoderma 2016, 269, 126–137. [Google Scholar] [CrossRef]
- Inbar, M.; Tamir, M.I.; Wittenberg, L. Runoff and Erosion Processes after a Forest Fire in Mount Carmel, a Mediterranean Area. Geomorphology 1998, 24, 17–33. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Serpa, D.; Nunes, J.P.C.; Prats, S.A.; Neves, R.; Keizer, J.J. Predicting the Effectiveness of Different Mulching Techniques in Reducing Post-Fire Runoff and Erosion at Plot Scale with the RUSLE, MMF and PESERA Models. Environ. Res. 2018, 165, 365–378. [Google Scholar] [CrossRef]
- Zema, D.A.; Lucas-Borja, M.E.; Fotia, L.; Rosaci, D.; Sarnè, G.M.; Zimbone, S.M. Predicting the Hydrological Response of a Forest after Wildfire and Soil Treatments Using an Artificial Neural Network. Comput. Electron. Agric. 2020, 170, 105280. [Google Scholar] [CrossRef]
- Nunes, J.P.; Naranjo Quintanilla, P.; Santos, J.M.; Serpa, D.; Carvalho-Santos, C.; Rocha, J.; Keizer, J.J.; Keesstra, S.D. Afforestation, Subsequent Forest Fires and Provision of Hydrological Services: A Model-Based Analysis for a Mediterranean Mountainous Catchment: Mediterranean Afforestation, Forest Fires and Hydrological Services. Land Degrad. Dev. 2018, 29, 776–788. [Google Scholar] [CrossRef]
- Aksoy, H.; Kavvas, M.L. A Review of Hillslope and Watershed Scale Erosion and Sediment Transport Models. Catena 2005, 64, 247–271. [Google Scholar] [CrossRef]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A Review of Erosion and Sediment Transport Models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Douglas, I. Hydrological Investigations of Forest Disturbance and Land Cover Impacts in South–East Asia: A Review. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1999, 354, 1725–1738. [Google Scholar] [CrossRef] [Green Version]
- Mohajerani, H.; Zema, D.A.; Lucas-Borja, M.E.; Casper, M. Understanding the Water Balance and Its Estimation Methods. In Precipitation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 193–221. [Google Scholar]
- Iserloh, T.; Ries, J.B.; Arnáez, J.; Boix-Fayos, C.; Butzen, V.; Cerdà, A.; Echeverría, M.T.; Fernández-Gálvez, J.; Fister, W.; Geißler, C. European Small Portable Rainfall Simulators: A Comparison of Rainfall Characteristics. Catena 2013, 110, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Heydari-Guran, S.; Ghasidian, E. Late Pleistocene Hominin Settlement Patterns and Population Dynamics in the Zagros Mountains: Kermanshah Region. Archaeol. Res. Asia 2020, 21, 100161. [Google Scholar] [CrossRef]
- Yusefi, G.H.; Faizolahi, K.; Darvish, J.; Safi, K.; Brito, J.C. The Species Diversity, Distribution, and Conservation Status of the Terrestrial Mammals of Iran. J. Mammal. 2019, 100, 55–71. [Google Scholar] [CrossRef]
- Heydari, M.; Poorbabaei, H.; Bazgir, M.; Salehi, A.; Eshaghirad, J. Earthworms as Indicators for Different Forest Management Types and Human Disturbance in Ilam Oak Forest, Iran. Folia For. Pol. Ser. A For. 2014, 56, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Samani, K.M.; Pordel, N.; Hosseini, V.; Shakeri, Z. Effect of Land-Use Changes on Chemical and Physical Properties of Soil in Western Iran (Zagros Oak Forests). J. For. Res. 2020, 31, 637–647. [Google Scholar] [CrossRef]
- Hlavčová, K.; Danáčová, M.; Kohnová, S.; Szolgay, J.; Valent, P.; Výleta, R. Estimating the Effectiveness of Crop Management on Reducing Flood Risk and Sediment Transport on Hilly Agricultural Land—A Myjava Case Study, Slovakia. CATENA 2019, 172, 678–690. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gómez, J.; Zema, D. Water Infiltration and Surface Runoff in Steep Clayey Soils of Olive Groves under Different Management Practices. Water 2019, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Carrà, B.G.; Bombino, G.; Denisi, P.; Plaza-Àlvarez, P.A.; Lucas-Borja, M.E.; Zema, D.A. Water Infiltration after Prescribed Fire and Soil Mulching with Fern in Mediterranean Forests. Hydrology 2021, 8, 95. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. Soil Wettability, Runoff and Erodibility of Major Dry-Mediterranean Land Use Types on Calcareous Soils. Hydrol. Process. Int. J. 2007, 21, 2325–2336. [Google Scholar] [CrossRef]
- Dunjó, G.; Pardini, G.; Gispert, M. The Role of Land Use–Land Cover on Runoff Generation and Sediment Yield at a Microplot Scale, in a Small Mediterranean Catchment. J. Arid Environ. 2004, 57, 239–256. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Plaza-Álvarez, P.A.; Zupanc, V.; Baartman, J.; Sagra, J.; González-Romero, J.; Moya, D.; de las Heras, J. Effects of Different Land Uses (Abandoned Farmland, Intensive Agriculture and Forest) on Soil Hydrological Properties in Southern Spain. Water 2019, 11, 503. [Google Scholar] [CrossRef] [Green Version]
- Messing, I.; Alriksson, A.; Johansson, W. Soil Physical Properties of Afforested and Arable Land. Soil Use Manag. 1997, 13, 209–217. [Google Scholar] [CrossRef]
- Pagliai, M.; Vignozzi, N.; Pellegrini, S. Soil Structure and the Effect of Management Practices. Soil Tillage Res. 2004, 79, 131–143. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations; Elsevier: Amsterdam, The Netherlands, 1998; ISBN 0-08-054415-0. [Google Scholar]
- Certini, G. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Álvarez, P.A.; Lucas-Borja, M.E.; Sagra, J.; Zema, D.A.; González-Romero, J.; Moya, D.; De las Heras, J. Changes in Soil Hydraulic Conductivity after Prescribed Fires in Mediterranean Pine Forests. J. Environ. Manag. 2019, 232, 1021–1027. [Google Scholar] [CrossRef]
- Niemeyer, R.J.; Bladon, K.D.; Woodsmith, R.D. Long-Term Hydrologic Recovery after Wildfire and Post-Fire Forest Management in the Interior Pacific Northwest. Hydrol. Process. 2020, 34, 1182–1197. [Google Scholar] [CrossRef]
- Wittenberg, L.; van der Wal, H.; Keesstra, S.; Tessler, N. Post-Fire Management Treatment Effects on Soil Properties and Burned Area Restoration in a Wildland-Urban Interface, Haifa Fire Case Study. Sci. Total Environ. 2020, 716, 135190. [Google Scholar] [CrossRef]
- Thomaz, E.L. Ash Physical Characteristics Affects Differently Soil Hydrology and Erosion Subprocesses. Land Degrad. Dev. 2018, 29, 690–700. [Google Scholar] [CrossRef]
- Doerr, S.H.; Ferreira, A.J.D.; Walsh, R.P.D.; Shakesby, R.A.; Leighton-Boyce, G.; Coelho, C.O.A. Soil Water Repellency as a Potential Parameter in Rainfall-runoff Modelling: Experimental Evidence at Point to Catchment Scales from Portugal. Hydrol. Process. 2003, 17, 363–377. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-Erosion and Runoff Prevention by Plant Covers: A Review. Sustain. Agric. 2009, 785–811. [Google Scholar]
- Parhizkar, M.; Shabanpour, M.; Khaledian, M.; Cerdà, A.; Rose, C.W.; Asadi, H.; Lucas-Borja, M.E.; Zema, D.A. Assessing and Modeling Soil Detachment Capacity by Overland Flow in Forest and Woodland of Northern Iran. Forests 2020, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-W.; Zhang, G.-H.; Geng, R.; Wang, H.; Zhang, X.C. Land Use Impacts on Soil Detachment Capacity by Overland Flow in the Loess Plateau, China. Catena 2015, 124, 9–17. [Google Scholar] [CrossRef]
- Zhang, G.; Tang, M.; Zhang, X.C. Temporal Variation in Soil Detachment under Different Land Uses in the Loess Plateau of China. Earth Surf. Process. Landf. 2009, 34, 1302–1309. [Google Scholar] [CrossRef]
- Zhang, G.-H.; Liu, G.-B.; Tang, K.-M.; Zhang, X.-C. Flow Detachment of Soils under Different Land Uses in the Loess Plateau of China. Trans. ASABE 2008, 51, 883–890. [Google Scholar] [CrossRef]
- Bazzoffi, P. Soil Erosion Tolerance and Water Runoff Control: Minimum Environmental Standards. Reg. Environ. Chang. 2009, 9, 169–179. [Google Scholar] [CrossRef]
- Wischmeier, W.H. Predicting Rainfall Erosion Losses. In USDA Agricultural Research Services Handbook; USDA: Washington, DC, USA, 1978; Volume 537. [Google Scholar]
- Hamed, Y.; Albergel, J.; Pépin, Y.; Asseline, J.; Nasri, S.; Zante, P.; Berndtsson, R.; El-Niazy, M.; Balah, M. Comparison between Rainfall Simulator Erosion and Observed Reservoir Sedimentation in an Erosion-Sensitive Semiarid Catchment. Catena 2002, 50, 1–16. [Google Scholar] [CrossRef]
- Loch, R.J.; Robotham, B.G.; Zeller, L.; Masterman, N.; Orange, D.N.; Bridge, B.J.; Sheridan, G.; Bourke, J.J. A Multi-Purpose Rainfall Simulator for Field Infiltration and Erosion Studies. Earth Surf. Process. Landf. 2001, 39, 599–610. [Google Scholar] [CrossRef]
- Prosser, I.P.; Williams, L. The Effect of Wildfire on Runoff and Erosion in Native Eucalyptus Forest. Hydrol. Process. 1998, 12, 251–265. [Google Scholar] [CrossRef]
- Keizer, J.J.; Silva, F.C.; Vieira, D.C.S.; González-Pelayo, O.; Campos, I.; Vieira, A.M.D.; Valente, S.; Prats, S.A. The Effectiveness of Two Contrasting Mulch Application Rates to Reduce Post-Fire Erosion in a Portuguese Eucalypt Plantation. Catena 2018, 169, 21–30. [Google Scholar] [CrossRef]
- Wilson, C.; Kampf, S.K.; Wagenbrenner, J.W.; MacDonald, L.H. Rainfall Thresholds for Post-Fire Runoff and Sediment Delivery from Plot to Watershed Scales. For. Ecol. Manag. 2018, 430, 346–356. [Google Scholar] [CrossRef]
- Vieira, D.C.S.; Malvar, M.C.; Martins, M.A.S.; Serpa, D.; Keizer, J.J. Key Factors Controlling the Post-Fire Hydrological and Erosive Response at Micro-Plot Scale in a Recently Burned Mediterranean Forest. Geomorphology 2018, 319, 161–173. [Google Scholar] [CrossRef]
- Zituni, R.; Wittenberg, L.; Malkinson, D. The Effects of Post-Fire Forest Management on Soil Erosion Rates 3 and 4 Years after a Wildfire, Demonstrated on the 2010 Mount Carmel Fire. Int. J. Wildland Fire 2019, 28, 377–385. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E. Efficiency of Post-Fire Hillslope Management Strategies: Gaps of Knowledge. Curr. Opin. Environ. Sci. Health 2021, 21, 100247. [Google Scholar] [CrossRef]
Land Use | Soil Texture (% Content) | ||
---|---|---|---|
Sand | Silt | Clay | |
Pp/O | 59.0 ± 8.5 | 17.0 ± 5.3 | 24.0 ± 3.8 |
NO | 64.0 ± 19.3 | 20.5 ± 6.0 | 15.5 ± 4.2 |
C/O | 49.8 ± 5.0 | 18.5 ± 4.2 | 31.7 ± 2.0 |
Factor | Degrees of Freedom | Sum of Squares | Mean Squares | F | Pr > F |
---|---|---|---|---|---|
Surface Runoff | |||||
Land use | 2 | 483 | 242 | 53.124 | 0.000 |
Soil condition | 1 | 0.62 | 0.62 | 0.137 | 0.714 |
Land use × Soil condition | 2 | 19.3 | 9.66 | 2.125 | 0.137 |
Land use | 2 | 1,773,147 | 886,574 | 53.254 | 0.000 |
Soil condition | 1 | 6337 | 6337 | 0.381 | 0.542 |
Land use × Soil condition | 2 | 29,092 | 14,546 | 0.874 | 0.427 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostami, N.; Heydari, M.; Uddin, S.M.M.; Esteban Lucas-Borja, M.; Zema, D.A. Hydrological Response of Burned Soils in Croplands, and Pine and Oak Forests in Zagros Forest Ecosystem (Western Iran) under Rainfall Simulations at Micro-Plot Scale. Forests 2022, 13, 246. https://doi.org/10.3390/f13020246
Rostami N, Heydari M, Uddin SMM, Esteban Lucas-Borja M, Zema DA. Hydrological Response of Burned Soils in Croplands, and Pine and Oak Forests in Zagros Forest Ecosystem (Western Iran) under Rainfall Simulations at Micro-Plot Scale. Forests. 2022; 13(2):246. https://doi.org/10.3390/f13020246
Chicago/Turabian StyleRostami, Noredin, Mehdi Heydari, S. M. Mijan Uddin, Manuel Esteban Lucas-Borja, and Demetrio Antonio Zema. 2022. "Hydrological Response of Burned Soils in Croplands, and Pine and Oak Forests in Zagros Forest Ecosystem (Western Iran) under Rainfall Simulations at Micro-Plot Scale" Forests 13, no. 2: 246. https://doi.org/10.3390/f13020246