Projecting the Impacts of Climate Change, Soil, and Landscape on the Geographic Distribution of Ma Bamboo (Dendrocalamus latiflorus Munro) in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation and Processing
2.1.1. Species Occurrence and Pseudo-Absence Data
2.1.2. Climatic, Soil, and Landscape Variables
2.1.3. Data Processing and Variable Screening
2.2. Development of Comprehensive Habitat Suitability Model
2.2.1. Ensemble Model for Climate and Soil Suitability
2.2.2. MaxEnt Model for Landscape Suitability
2.2.3. Comprehensive Habitat Suitability Model
2.3. Analysis of Species’ Spatial Pattern Changes
2.3.1. Spatial Distribution Shifts and Area Changes
2.3.2. Core Shifts of Species Distributions
2.3.3. Low-Impact Areas under Different SSPs
3. Results
3.1. Model Assessment
3.2. Responses of D. latiflorus Distribution to Climate, Soil, and Landscape Variables
3.3. Current and Future Potential Suitable Habitats under Climate Change Scenarios
3.4. Core Shift and Low-Impact Areas under Climate Change Scenarios
4. Discussion
4.1. Key Climate, Soil, and Landscape Factors Shaping Suitable Habitats
4.2. Climate Change Driving Species Migration Trends
4.3. Development and Conservation Management of Germplasm Resources
4.4. Model Rationality and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, G.; Meng, C.; Jiang, P.; Xu, Q. Review of Carbon Fixation in Bamboo Forests in China. Bot. Rev. 2011, 77, 262–270. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Zhou, G.; Yang, S.; Chen, J. Estimation of CO2 Fluxes and Its Seasonal Variations from the Effective Management Lei Bamboo (Phyllostachys violascens). Acta Ecol. Sin. 2013, 33, 3434–3444. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, G.; Du, H.; Berninger, F.; Mao, F.; Li, X.; Chen, L.; Cui, L.; Li, Y.; Zhu, D.; et al. Response of Carbon Uptake to Abiotic and Biotic Drivers in an Intensively Managed Lei Bamboo Forest. J. Environ. Manag. 2018, 223, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mao, F.; Du, H.; Zhou, G.; Xing, L.; Liu, T.; Han, N.; Liu, Y.; Zhu, D.; Zheng, J.; et al. Spatiotemporal Evolution and Impacts of Climate Change on Bamboo Distribution in China. J. Environ. Manag. 2019, 248, 109265. [Google Scholar] [CrossRef] [PubMed]
- China Bamboo Industry Association. National Bamboo Industry Development Plan (2021–2030); Technical Report; China Bamboo Industry Association: Beijing, China, 2022. [Google Scholar]
- Tuanmu, M.N.; Viña, A.; Winkler, J.A.; Li, Y.; Xu, W.; Ouyang, Z.; Liu, J. Climate-Change Impacts on Understorey Bamboo Species and Giant Pandas in China’s Qinling Mountains. Nat. Clim. Chang. 2013, 3, 249–253. [Google Scholar] [CrossRef]
- Zhou, W. An Analysis of the influence of precipitation on the growth of bamboo forest. J. Bamboo Res. 1991, 9, 33–39. [Google Scholar]
- Janzen, D.H. Why Bamboos Wait so Long to Flower. Annu. Rev. Ecol. Syst. 1976, 7, 347–391. [Google Scholar] [CrossRef]
- Taylor, A.H.; Reid, D.G.; Zisheng, Q.; Jinchu, H. Spatial Patterns and Environmental Associates of Bamboo (Bashania fangiana Yi) after Mass-Flowering in Southwestern China. Bull. Torrey Bot. Club 1991, 118, 247. [Google Scholar] [CrossRef]
- Taylor, A.H.; Zisheng, Q. Structure and Dynamics of Bamboos in the Wolong Natural Reserve, China. Am. J. Bot. 1993, 80, 375–384. [Google Scholar] [CrossRef]
- Cai, B.; Jin, H. Biological characteristics of bamboo and it application in scenic gardening. World Bamboo Ratt. 2010, 8, 39–43. [Google Scholar]
- Anderson, R.P. A Framework for Using Niche Models to Estimate Impacts of Climate Change on Species Distributions. Ann. N. Y. Acad. Sci. 2013, 1297, 8–28. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Zhao, Z.; Nawaz, Z. Predicting the Impacts of Climate Change, Soils and Vegetation Types on the Geographic Distribution of Polyporus umbellatus in China. Sci. Total Environ. 2019, 648, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.M.; Shen, X.L.; Tong, L.; Lei, F.W.; Mu, X.Y.; Zhang, Z.X. Impact of Past and Future Climate Change on the Potential Distribution of an Endangered Montane Shrub Lonicera oblata and Its Conservation Implications. Forests 2021, 12, 125. [Google Scholar] [CrossRef]
- Zhao, Z.; Guo, Y.; Wei, H.; Ran, Q.; Liu, J.; Zhang, Q.; Gu, W. Potential Distribution of Notopterygium incisum Ting Ex H. T. Chang and Its Predicted Responses to Climate Change Based on a Comprehensive Habitat Suitability Model. Ecol. Evol. 2020, 10, 3004–3016. [Google Scholar] [CrossRef]
- Marmion, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. The Performance of State-of-the-Art Modelling Techniques Depends on Geographical Distribution of Species. Ecol. Model. 2009, 220, 3512–3520. [Google Scholar] [CrossRef]
- Naimi, B.; Araújo, M.B. Sdm: A Reproducible and Extensible R Platform for Species Distribution Modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. Kuenm: An R Package for Detailed Development of Ecological Niche Models Using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef]
- Thuiller, W.; Georges, D.; Gueguen, M.; Engler, R.; Breiner, F.; Lafourcade, B.; Patin, R.; Blancheteau, H. Biomod2: Ensemble Platform for Species Distribution Modeling; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Segurado, P.; Araújo, M.B. An Evaluation of Methods for Modelling Species Distributions. J. Biogeogr. 2004, 31, 1555–1568. [Google Scholar] [CrossRef]
- Thuiller, W.; Araújo, M.B.; Lavorel, S. Generalized Models vs. Classification Tree Analysis: Predicting Spatial Distributions of Plant Species at Different Scales. J. Veg. Sci. 2003, 14, 669–680. [Google Scholar] [CrossRef]
- Basile, M.; Valerio, F.; Balestrieri, R.; Posillico, M.; Bucci, R.; Altea, T.; Cinti, B.D.; Matteucci, G. Patchiness of Forest Landscape Can Predict Species Distribution Better than Abundance: The Case of a Forest-Dwelling Passerine, the Short-Toed Treecreeper, in Central Italy. PeerJ 2016, 4, e2398. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Mas, R.; Papadaki, C.; Martínez-Capel, F.; Zogaris, S.; Ntoanidis, L.; Dimitriou, E. Generalized Additive and Fuzzy Models in Environmental Flow Assessment: A Comparison Employing the West Balkan Trout (Salmo farioides; Karaman, 1938). Ecol. Eng. 2016, 91, 365–377. [Google Scholar] [CrossRef]
- Moisen, G.G.; Freeman, E.A.; Blackard, J.A.; Frescino, T.S.; Zimmermann, N.E.; Edwards, T.C. Predicting Tree Species Presence and Basal Area in Utah: A Comparison of Stochastic Gradient Boosting, Generalized Additive Models, and Tree-Based Methods. Ecol. Model. 2006, 199, 176–187. [Google Scholar] [CrossRef]
- Lopatin, J.; Dolos, K.; Hernández, H.J.; Galleguillos, M.; Fassnacht, F.E. Comparing Generalized Linear Models and Random Forest to Model Vascular Plant Species Richness Using LiDAR Data in a Natural Forest in Central Chile. Remote Sens. Environ. 2016, 173, 200–210. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the Black Box: An Open-source Release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Mi, C.; Huettmann, F.; Guo, Y.; Han, X.; Wen, L. Why Choose Random Forest to Predict Rare Species Distribution with Few Samples in Large Undersampled Areas? Three Asian Crane Species Models Provide Supporting Evidence. PeerJ 2017, 5, e2849. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. Bioclim: The First Species Distribution Modelling Package, Its Early Applications and Relevance to Most Current MaxEnt Studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Sun, P.; Wang, T.; Wang, G.; Zhang, X.; Wang, L. Consensus Forecasting of Species Distributions: The Effects of Niche Model Performance and Niche Properties. PLoS ONE 2015, 10, e0120056. [Google Scholar] [CrossRef]
- Strubbe, D.; Jackson, H.; Groombridge, J.; Matthysen, E. Invasion Success of a Global Avian Invader Is Explained by Within-Taxon Niche Structure and Association with Humans in the Native Range. Divers. Distrib. 2015, 21, 675–685. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A Platform for Ensemble Forecasting of Species Distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R, 1st ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Shinohara, Y.; Misumi, Y.; Kubota, T.; Nanko, K. Characteristics of Soil Erosion in a Moso-Bamboo Forest of Western Japan: Comparison with a Broadleaved Forest and a Coniferous Forest. CATENA 2019, 172, 451–460. [Google Scholar] [CrossRef]
- Liu, Y.H.; Yen, T.M. Assessing Aboveground Carbon Storage Capacity in Bamboo Plantations with Various Species Related to Its Affecting Factors across Taiwan. For. Ecol. Manag. 2021, 481, 118745. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Yrjälä, K.; Vinod, K.K.; Sharma, A.; Cho, J.; Satheesh, V.; Zhou, M. Genetics and Genomics of Moso Bamboo (Phyllostachys edulis): Current Status, Future Challenges, and Biotechnological Opportunities toward a Sustainable Bamboo Industry. Food Energy Secur. 2020, 9, e229. [Google Scholar] [CrossRef]
- Choudhury, D.; Sahu, J.K.; Sharma, G.D. Value Addition to Bamboo Shoots: A Review. J. Food Sci. Technol. 2012, 49, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Noremylia, M.B.; Aufa, A.N.; Ismail, Z.; Hassan, M.Z. An Overview of the Potential Usage of Bamboo Plants in Medical Field. In Bamboo Science and Technology; Palombini, F.L., Nogueira, F.M., Eds.; Springer Nature: Singapore, 2023; pp. 55–66. [Google Scholar] [CrossRef]
- Taylor, A.H.; Jinyan, H.; ShiQiang, Z. Canopy Tree Development and Undergrowth Bamboo Dynamics in Old-Growth Abies–Betula Forests in Southwestern China: A 12-Year Study. For. Ecol. Manag. 2004, 200, 347–360. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, T.; Tarin, M.W.K.; Han, Y.; Hu, W.; Rong, J.; He, T.; Zheng, Y. Effect of Various Mulch Materials on Chemical Properties of Soil, Leaves and Shoot Characteristics in Dendrocalamus latiflorus Munro Forests. Plants 2021, 10, 2302. [Google Scholar] [CrossRef]
- Deng, C.; Li, K.J.; Xiang, P.Z. Study on the Distribution Pattern of Dendrocalamus latiflorus in China Based on the Maximum Entropy Model (MaxEnt) and Geographic Information System (GIS). Environ. Ecol. 2023, 5, 69–74. [Google Scholar]
- Liu, J.; Yang, Y.; Wei, H.; Zhang, Q.; Zhang, X.; Zhang, X.; Gu, W. Assessing Habitat Suitability of Parasitic Plant Cistanche deserticola in Northwest China under Future Climate Scenarios. Forests 2019, 10, 823. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Zhao, Z.; Wei, H.; Gao, B.; Gu, W. Prediction of the Potential Geographic Distribution of the Ectomycorrhizal Mushroom Tricholoma matsutake under Multiple Climate Change Scenarios. Sci. Rep. 2017, 7, 46221. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhao, L.; Larson-Rabin, Z.; Li, D.Z.; Guo, Z.H. De Novo Sequencing and Characterization of the Floral Transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS ONE 2012, 7, e42082. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, J.; Xia, X.; Kan, J. Purification and Structural Identification of Polysaccharides from Bamboo Shoots (Dendrocalamus latiflorus). Int. J. Mol. Sci. 2015, 16, 15560–15577. [Google Scholar] [CrossRef]
- Wu, F.H.; Kan, D.P.; Lee, S.B.; Daniell, H.; Lee, Y.W.; Lin, C.C.; Lin, N.S.; Lin, C.S. Complete Nucleotide Sequence of Dendrocalamus latiflorus and Bambusa oldhamii Chloroplast Genomes. Tree Physiol. 2009, 29, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yang, D.; Rong, J.; Chen, L.; Zhu, Q.; He, T.; Chen, L.; Ye, J.; Fan, L.; Gao, Y.; et al. Allele-Aware Chromosome-Scale Assembly of the Allopolyploid Genome of Hexaploid Ma Bamboo (Dendrocalamus latiflorus Munro). J. Integr. Plant Biol. 2022, 64, 649–670. [Google Scholar] [CrossRef]
- Ye, S.; Cai, C.; Ren, H.; Wang, W.; Xiang, M.; Tang, X.; Zhu, C.; Yin, T.; Zhang, L.; Zhu, Q. An Efficient Plant Regeneration and Transformation System of Ma Bamboo (Dendrocalamus latiflorus Munro) Started from Young Shoot as Explant. Front. Plant Sci. 2017, 8, 1298. [Google Scholar] [CrossRef]
- Yen, T.M.; Sun, P.K.; Li, L.E. Predicting Aboveground Biomass and Carbon Storage for Ma Bamboo (Dendrocalamus latiflorus Munro) Plantations. Forests 2023, 14, 854. [Google Scholar] [CrossRef]
- Sampaio, U.M.; da Silva, M.F.; Goldbeck, R.; Clerici, M.T.P.S. Technological and Prebiotic Aspects of Young Bamboo Culm Flour (Dendrocalamus latiflorus) Combined with Rice Flour to Produce Healthy Extruded Products. Food Res. Int. 2023, 165, 112482. [Google Scholar] [CrossRef]
- Cui, L.; Du, H.; Zhou, G.; Li, X.; Mao, F.; Xu, X.; Fan, W.; Li, Y.; Zhu, D.; Liu, T.; et al. Combination of Decision Tree and Mixed Pixel Decomposition for Extracting Bamboo Forest Information in China. Natl. Remote. Sens. Bull. 2021, 23, 166–176. [Google Scholar] [CrossRef]
- Li, Y.; Han, N.; Li, X.; Du, H.; Mao, F.; Cui, L.; Liu, T.; Xing, L. Spatiotemporal Estimation of Bamboo Forest Aboveground Carbon Storage Based on Landsat Data in Zhejiang, China. Remote Sens. 2018, 10, 898. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next Generation Python-Based GIS Toolkit for Landscape Genetic, Biogeographic and Species Distribution Model Analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef] [PubMed]
- Almasieh, K.; Mirghazanfari, S.M.; Mahmoodi, S. Biodiversity Hotspots for Modeled Habitat Patches and Corridors of Species Richness and Threatened Species of Reptiles in Central Iran. Eur. J. Wildl. Res. 2019, 65, 92. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Sun, P.; Wang, T.; Wang, G.; Wang, L.; Zhang, X. Using DEM to Predict Abies faxoniana and Quercus aquifolioides Distributions in the Upstream Catchment Basin of the Min River in Southwest China. Ecol. Indic. 2016, 69, 91–99. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Zimmermann, N.E.; Edwards, T.C.; Graham, C.H.; Pearman, P.B.; Svenning, J.C. New Trends in Species Distribution Modelling. Ecography 2010, 33, 985–989. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Mu, C.; Guo, X.; Chen, Y. Impact of Global Climate Change on the Distribution Range and Niche Dynamics of Eleutherodactylus Planirostrish in China. Biology 2022, 11, 588. [Google Scholar] [CrossRef]
- Lv, Z.; Li, D. The Potential Distribution of Juniperus rigida Sieb. et Zucc. Vary Diversely in China under the Stringent and High GHG Emission Scenarios Combined Bioclimatic, Soil, and Topographic Factors. Forests 2021, 12, 1140. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.; Huang, D.; Wang, H.; Cao, Q.; Fan, P.; Yang, N.; Zheng, P.; Wang, R. The Effect of Climate Change on the Richness Distribution Pattern of Oaks (Quercus L.) in China. Sci. Total Environ. 2020, 744, 140786. [Google Scholar] [CrossRef]
- Beckmann, M.; Václavík, T.; Manceur, A.M.; Šprtová, L.; Von Wehrden, H.; Welk, E.; Cord, A.F. glUV: A Global UV-B Radiation Data Set for Macroecological Studies. Methods Ecol. Evol. 2014, 5, 372–383. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, C.; Zhang, J.; Feng, Q. The Grid Data of Soil Properties Based on WISE30sec; Northwest Institute of Eco-Environment and Resources: Lanzhou, China, 2023. [Google Scholar] [CrossRef]
- Batjes, N. Harmonized Soil Property Values for Broad-Scale Modelling (WISE30sec) with Estimates of Global Soil Carbon Stocks. Geoderma 2016, 269, 61–68. [Google Scholar] [CrossRef]
- An, Y.; Zhou, B. Research on structure and biomechanics of bamboos underground system: A review. Chin. Agric. Sci. Bull. 2009, 25, 83–88. [Google Scholar]
- Tong, R.; Chen, Q.; Zhou, B.; Tang, Y.; An, Y.; Ge, X.; Cao, Y.; Yang, Z. Structure and Biomechanical Properties of Underground System of Moso Bamboo and Lei Bamboo. Acta Ecol. Sin. 2018, 40, 2242–2251. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A High-accuracy Map of Global Terrain Elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef]
- Editorial Committee of Chinese Vegetation Map. 1:1 Million Vegetation Data Set in China; Northwest Institute of Eco-Environment and Resources: Lanzhou, China, 2023. [Google Scholar] [CrossRef]
- Youhua, R. Comprehensive Land Cover Dataset of China; Northwest Institute of Eco-Environment and Resources: Lanzhou, China, 2020. [Google Scholar] [CrossRef]
- Graham, M.H. Confronting Multicollinearity in Ecological Multiple Regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Zhao, Q.; Mi, Z.Y.; Lu, C.; Zhang, X.F.; Chen, L.J.; Wang, S.Q.; Niu, J.F.; Wang, Z.Z. Predicting Potential Distribution of Ziziphus spinosa (Bunge) H.H. Hu Ex F.H. Chen in China under Climate Change Scenarios. Ecol. Evol. 2022, 12, e8629. [Google Scholar] [CrossRef] [PubMed]
- Zurell, D.; Franklin, J.; König, C.; Bouchet, P.J.; Dormann, C.F.; Elith, J.; Fandos, G.; Feng, X.; Guillera-Arroita, G.; Guisan, A.; et al. A Standard Protocol for Reporting Species Distribution Models. Ecography 2020, 43, 1261–1277. [Google Scholar] [CrossRef]
- Santos-Hernández, A.F.; Monterroso-Rivas, A.I.; Granados-Sánchez, D.; Villanueva-Morales, A.; Santacruz-Carrillo, M. Projections for Mexico’s Tropical Rainforests Considering Ecological Niche and Climate Change. Forests 2021, 12, 119. [Google Scholar] [CrossRef]
- Smith, A.B.; Godsoe, W.; Rodríguez-Sánchez, F.; Wang, H.H.; Warren, D. Niche Estimation above and below the Species Level. Trends Ecol. Evol. 2019, 34, 260–273. [Google Scholar] [CrossRef]
- Pan, J.; Fan, X.; Luo, S.; Zhang, Y.; Yao, S.; Guo, Q.; Qian, Z. Predicting the Potential Distribution of Two Varieties of Litsea coreana (Leopard-Skin Camphor) in China under Climate Change. Forests 2020, 11, 1159. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, Y.; Li, W.N.; Hu, B.W.; Zou, J.B.; Wang, S.Q.; Niu, J.F.; Wang, Z.Z. Predicting the Potential Distribution of Perennial Plant Coptis chinensis Franch. in China under Multiple Climate Change Scenarios. Forests 2021, 12, 1464. [Google Scholar] [CrossRef]
- Elith, J.; Ferrier, S.; Huettmann, F.; Leathwick, J. The Evaluation Strip: A New and Robust Method for Plotting Predicted Responses from Species Distribution Models. Ecol. Model. 2005, 186, 280–289. [Google Scholar] [CrossRef]
- Punyasena, S.W.; Eshel, G.; McElwain, J.C. The Influence of Climate on the Spatial Patterning of Neotropical Plant Families. J. Biogeogr. 2008, 35, 117–130. [Google Scholar] [CrossRef]
- Zhang, Y. A Study of the Effects of Climatic Fluctuation on Chinese Fir and Bamboo Ecological Environment in Subtropical Regions in China. Q. J. Appl. Meteorol. 1995, 6, 75–82. [Google Scholar]
- Yang, H.; Zhang, D.; Winkler, J.A.; Huang, Q.; Zhang, Y.; Wu, P.; Liu, J.; Ouyang, Z.; Xu, W.; Chen, X.; et al. Field Experiment Reveals Complex Warming Impacts on Giant Pandas’ Bamboo Diet. Biol. Conserv. 2024, 294, 110635. [Google Scholar] [CrossRef]
- Ying-chun, L.; Qing-ping, Y.; Zi-wu, G.; Shuang-lin, C.; Jun-jing, H. Damage Characteristics of Phyllostachys edulis Stands under Continuous High Temperature and Drought. For. Res. 2015, 28, 646–653. [Google Scholar]
- Shi, P.; Preisler, H.K.; Quinn, B.K.; Zhao, J.; Huang, W.; Röll, A.; Cheng, X.; Li, H.; Hölscher, D. Precipitation Is the Most Crucial Factor Determining the Distribution of Moso Bamboo in Mainland China. Glob. Ecol. Conserv. 2020, 22, e00924. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Feng, J.; Chen, C.; Chen, J.; Long, T.; Li, J.; Zang, R.; Li, J. Differential Responses to Climate and Land-Use Changes in Threatened Chinese Taxus Species. Forests 2019, 10, 766. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P. Predicting the Impacts of Climate Change on the Distribution of Species: Are Bioclimate Envelope Models Useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Bertrand, R.; Lenoir, J.; Piedallu, C.; Riofrío-Dillon, G.; De Ruffray, P.; Vidal, C.; Pierrat, J.C.; Gégout, J.C. Changes in Plant Community Composition Lag behind Climate Warming in Lowland Forests. Nature 2011, 479, 517–520. [Google Scholar] [CrossRef]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of Global Warming on Wild Animals and Plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Loarie, S.R.; Duffy, P.B.; Hamilton, H.; Asner, G.P.; Field, C.B.; Ackerly, D.D. The Velocity of Climate Change. Nature 2009, 462, 1052–1055. [Google Scholar] [CrossRef]
- Nogués-Bravo, D.; Araújo, M.; Errea, M.; Martínez-Rica, J. Exposure of Global Mountain Systems to Climate Warming during the 21st Century. Glob. Environ. Chang. 2007, 17, 420–428. [Google Scholar] [CrossRef]
- Dawson, T.P.; Jackson, S.T.; House, J.I.; Prentice, I.C.; Mace, G.M. Beyond Predictions: Biodiversity Conservation in a Changing Climate. Science 2011, 332, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of Climate Change on the Future of Biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Boulangeat, I.; Gravel, D.; Thuiller, W. Accounting for Dispersal and Biotic Interactions to Disentangle the Drivers of Species Distributions and Their Abundances. Ecol. Lett. 2012, 15, 584–593. [Google Scholar] [CrossRef]
- Kearney, M.; Porter, W. Mechanistic Niche Modelling: Combining Physiological and Spatial Data to Predict Species’ Ranges. Ecol. Lett. 2009, 12, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Meier, E.S.; Lischke, H.; Schmatz, D.R.; Zimmermann, N.E. Climate, Competition and Connectivity Affect Future Migration and Ranges of European Trees. Glob. Ecol. Biogeogr. 2012, 21, 164–178. [Google Scholar] [CrossRef]
- Ohlemüller, R.; Gritti, E.S.; Sykes, M.T.; Thomas, C.D. Quantifying Components of Risk for European Woody Species under Climate Change. Glob. Chang. Biol. 2006, 12, 1788–1799. [Google Scholar] [CrossRef]
Category | Environmental Variables | Range | Optimal Value | Suitable Ranges |
---|---|---|---|---|
Climate | Bio1 | 8.5–25.7 | 20.1 | 16.3–25.7 |
Bio12 | 814–3307 | 2516 | 1053–2732 | |
Soil | CECc 20–40 cm | 6–69 | 12.4 | 7.4–40.8 |
Landscape | Vegetation | 12 vegetation groups, 54 vegetation types | Tri-annual food crop fields, evergreen fruit orchards, and economic forests | 1. Tri-annual food crop fields, evergreen fruit orchards, and economic forests; 2. Biannual or ternary food crop fields and evergreen fruit tree orchards, and subtropical economic forests; 3. Subtropical coniferous forest; 4. Subtropical broad-leaved evergreen forest |
Elevation | 5–2161 | 198 | 20–625 |
Scenarios | Areas and Percentages of Suitable Habitats | |||||
---|---|---|---|---|---|---|
Moderate Suitable | % | Highly Suitable | % | Total Suitable | % | |
Current | 26.71 | - | 2.24 | - | 28.95 | - |
SSP1-RCP2.6 (2030s) | 30.32 | 113.51 | 1.81 | 80.66 | 32.13 | 110.97 |
SSP1-RCP2.6 (2050s) | 28.26 | 105.82 | 1.19 | 52.97 | 29.45 | 101.73 |
SSP1-RCP2.6 (2070s) | 28.47 | 106.61 | 1.13 | 50.36 | 29.60 | 102.25 |
SSP2-RCP4.5 (2030s) | 27.64 | 103.49 | 1.30 | 58.04 | 28.94 | 99.98 |
SSP2-RCP4.5 (2050s) | 29.07 | 108.86 | 1.11 | 49.73 | 30.19 | 104.28 |
SSP2-RCP4.5 (2070s) | 28.61 | 107.10 | 0.96 | 42.84 | 29.57 | 102.12 |
SSP3-RCP7.0 (2030s) | 26.05 | 97.55 | 1.23 | 54.94 | 27.29 | 94.25 |
SSP3-RCP7.0 (2050s) | 27.12 | 101.55 | 1.02 | 45.67 | 28.15 | 97.23 |
SSP3-RCP7.0 (2070s) | 27.37 | 102.48 | 0.75 | 33.67 | 28.13 | 97.15 |
SSP5-RCP8.5 (2030s) | 28.02 | 104.92 | 1.25 | 55.94 | 29.28 | 101.13 |
SSP5-RCP8.5 (2050s) | 28.13 | 105.31 | 0.93 | 41.71 | 29.06 | 100.39 |
SSP5-RCP8.5 (2070s) | 27.10 | 101.46 | 0.62 | 27.51 | 27.72 | 95.73 |
Shared Socio-Economic Pathways | Low-Impact Areas | ||
---|---|---|---|
Geographic Area (×104 km2) | Percentage of Current Suitable Area (%) | Percentage of SSP1-RCP2.6 Area (%) | |
SSP1-RCP2.6 | 29.28 | 101.14 | 100 |
SSP2-RCP4.5 | 27.36 | 94.51 | 93.40 |
SSP3-RCP7.0 | 24.70 | 85.32 | 84.40 |
SSP5-RCP8.5 | 25.02 | 86.42 | 85.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-J.; Xie, Y.-Q.; He, T.-Y.; Chen, L.-Y.; Rong, J.-D.; Chen, L.-G.; Zheng, Y.-S. Projecting the Impacts of Climate Change, Soil, and Landscape on the Geographic Distribution of Ma Bamboo (Dendrocalamus latiflorus Munro) in China. Forests 2024, 15, 1321. https://doi.org/10.3390/f15081321
Chen L-J, Xie Y-Q, He T-Y, Chen L-Y, Rong J-D, Chen L-G, Zheng Y-S. Projecting the Impacts of Climate Change, Soil, and Landscape on the Geographic Distribution of Ma Bamboo (Dendrocalamus latiflorus Munro) in China. Forests. 2024; 15(8):1321. https://doi.org/10.3390/f15081321
Chicago/Turabian StyleChen, Li-Jia, Yan-Qiu Xie, Tian-You He, Ling-Yan Chen, Jun-Dong Rong, Li-Guang Chen, and Yu-Shan Zheng. 2024. "Projecting the Impacts of Climate Change, Soil, and Landscape on the Geographic Distribution of Ma Bamboo (Dendrocalamus latiflorus Munro) in China" Forests 15, no. 8: 1321. https://doi.org/10.3390/f15081321