Shifts in Plant Phenology and Its Responses to Climate Warming in Three Temperate Cities of China during 1963–2020
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Site
2.2. Data Sources
2.3. Methods
2.3.1. Statistical Method of Phenological Changes
2.3.2. Analysis of the Relationship between Phenology and Preseason Temperature
3. Results
3.1. Phenological Variation across Sites
3.2. Phenological Change between 1963–1991 and 1992–2020
3.3. Relationship between Phenophases and Temperature
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Species | Family | LF | NFFD1 | NFFD2 | MFFD | NFLD1 | NFLD2 | MFLD | NLCD1 | NLCD2 | MLCD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Fraxinus chinensis | Fraxinus | T | 18 | 24 | 4/19 | 24 | 26 | 4/14 | 22 | 25 | 10/19 |
2 | Castanea mollissima | Castanea | T | 26 | 25 | 5/30 | 26 | 26 | 4/19 | 25 | 25 | 11/2 |
3 | Syringa reticulata subsp. amurensis | Syringa | T | 22 | 19 | 5/18 | 24 | 19 | 4/2 | 21 | 18 | 11/5 |
4 | Prunus persica ‘Duplex’ | Prunus | T | 18 | 21 | 4/8 | 17 | 20 | 4/11 | 12 | 16 | 11/3 |
5 | Platycladus orientalis | Platycladus | T | 22 | 23 | 3/28 | - | - | - | - | - | - |
6 | Ailanthus altissima | Ailanthus | T | 24 | 20 | 5/24 | 25 | 22 | 4/18 | 17 | 21 | 10/22 |
7 | Robinia pseudoacacia | Robinia | T | 25 | 26 | 5/2 | 25 | 26 | 4/14 | 23 | 23 | 10/30 |
8 | Pyrus betulifolia | Pyrus | T | 17 | 21 | 4/14 | 17 | 19 | 4/8 | 16 | 20 | 10/28 |
9 | Juniperus chinensis | Juniperus | T | 23 | 21 | 4/1 | - | - | - | - | - | - |
10 | Salix matsudana | Salix | T | 26 | 19 | 4/2 | 24 | 19 | 3/29 | 20 | 18 | 11/12 |
11 | Albizia julibrissin | Albizia | T | 26 | 18 | 6/9 | 26 | 18 | 5/1 | 22 | 14 | 11/1 |
12 | Styphnolobium japonicum | Styphnolobium | T | 23 | 20 | 7/14 | 23 | 20 | 4/25 | 18 | 13 | 11/14 |
13 | Rosa xanthina | Rosa | S | 14 | 20 | 4/23 | 14 | 21 | 4/2 | 10 | 18 | 11/10 |
14 | Cotinus coggygria var. cinereus | Cotinus | T | 17 | 19 | 4/21 | 16 | 18 | 4/12 | 17 | 19 | 10/25 |
15 | Rhodotypos scandens | Rhodotypos | T | 17 | 18 | 4/16 | 17 | 17 | 4/7 | 16 | 11 | 11/13 |
16 | Populus × canadensis | Populus | T | 23 | 26 | 3/26 | 25 | 24 | 4/7 | 23 | 21 | 10/31 |
17 | Diospyros lotus | Diospyros | T | 22 | 25 | 5/17 | 23 | 25 | 4/17 | 16 | 20 | 10/28 |
18 | Forsythia suspensa | Forsythia | S | 18 | 21 | 3/28 | 18 | 19 | 4/8 | 15 | 19 | 11/4 |
19 | Styphnolobium japonicum ‘Pendula’ | Styphnolobium | T | 16 | 19 | 7/11 | 18 | 21 | 4/13 | - | - | - |
20 | Koelreuteria paniculata | Koelreuteria | T | 16 | 19 | 5/31 | 19 | 21 | 4/11 | 17 | 20 | 10/27 |
21 | Populus tomentosa | Populus | T | 22 | 26 | 3/17 | 21 | 26 | 4/9 | 14 | 18 | 11/6 |
22 | Paeonia × suffruticosa | Paeonia | S | 26 | 25 | 4/20 | 25 | 26 | 3/31 | 19 | 23 | 10/29 |
23 | Paulownia fortunei | Paulownia | T | 16 | 16 | 4/20 | 15 | 12 | 4/23 | - | - | - |
24 | Catalpa bungei | Catalpa | T | 18 | 18 | 4/27 | 19 | 19 | 4/12 | - | - | - |
25 | Prunus × yedoensis | Prunus | T | 26 | 20 | 4/14 | 26 | 19 | 4/11 | 25 | 19 | 10/31 |
26 | Morus alba | Morus | S | 24 | 23 | 4/22 | 24 | 23 | 4/20 | 21 | 21 | 10/30 |
27 | Prunus davidiana | Prunus | T | 27 | 26 | 3/22 | 27 | 26 | 4/1 | 18 | 19 | 11/6 |
28 | Punica granatum | Punica | T | 16 | 20 | 5/27 | 17 | 21 | 4/23 | 13 | 19 | 10/30 |
29 | Diospyros kaki | Diospyros | T | 23 | 23 | 5/14 | 23 | 23 | 4/15 | 21 | 22 | 10/29 |
30 | Metasequoia glyptostroboides | Metasequoia | T | - | - | - | 21 | 20 | 4/11 | 19 | 20 | 11/3 |
31 | Viburnum farreri | Viburnum | T | 16 | 11 | 3/30 | 14 | 10 | 3/29 | - | - | - |
32 | Salix matsudana ‘Pendula’ | Salix | T | 24 | 20 | 4/6 | 26 | 21 | 3/30 | 24 | 20 | 11/13 |
33 | Firmiana simplex | Firmiana | T | 23 | 23 | 6/20 | 24 | 25 | 4/27 | 21 | 24 | 10/29 |
34 | Malus × micromalus | Malus | T | 26 | 21 | 4/13 | 26 | 21 | 3/31 | 20 | 17 | 11/11 |
35 | Populus simonii | Populus | T | 13 | 15 | 4/3 | 14 | 15 | 4/6 | 11 | 14 | 11/4 |
36 | Prunus armeniaca | Prunus | T | 26 | 26 | 4/2 | 24 | 25 | 4/13 | 22 | 23 | 11/6 |
37 | Ginkgo biloba | Ginkgo | T | - | - | - | 16 | 20 | 4/10 | 16 | 20 | 10/30 |
38 | Jasminum nudiflorum | Jasminum | T | 10 | 19 | 3/17 | - | - | - | - | - | - |
39 | Pinus tabuliformis | Pinus | T | 25 | 21 | 4/26 | 25 | 22 | 4/26 | - | - | - |
40 | Ulmus pumila | Ulmus | T | 25 | 18 | 3/16 | 26 | 18 | 4/8 | 19 | 18 | 11/11 |
41 | Prunus triloba | Prunus | T | 21 | 26 | 4/6 | 20 | 25 | 4/8 | 20 | 24 | 10/30 |
42 | Yulania denudata | Yulania | T | 26 | 21 | 3/30 | 26 | 21 | 4/12 | 25 | 19 | 11/1 |
43 | Sorbaria sorbifolia | Sorbaria | S | 15 | 18 | 6/8 | 16 | 20 | 3/30 | 14 | 14 | 11/8 |
44 | Syringa oblata | Syringa | S | 24 | 26 | 4/10 | 24 | 26 | 3/31 | 20 | 21 | 11/3 |
45 | Cercis chinensis | Cercis | S | 24 | 26 | 4/14 | 23 | 26 | 4/14 | 22 | 25 | 10/28 |
46 | Wisteria sinensis | Wisteria | V | 24 | 26 | 4/21 | 24 | 26 | 4/21 | 22 | 23 | 11/8 |
47 | Lagerstroemia indica | Lagerstroemia | S | 22 | 25 | 7/5 | 24 | 25 | 4/26 | 21 | 24 | 10/28 |
48 | Yulania liliiflora | Yulania | S | 26 | 20 | 4/4 | 25 | 20 | 4/11 | 24 | 18 | 10/29 |
49 | Prunus × subhirtella | Prunus | T | 16 | 16 | 4/10 | 15 | 15 | 4/11 | 15 | 15 | 10/30 |
Species | Family | LF | NFFD1 | NFFD2 | MFFD | NFLD1 | NFLD2 | MFLD | NLCD1 | NLCD2 | MLCD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Syringa reticulata subsp. amurensis | Syringa | T | 12 | 18 | 6/7 | 12 | 18 | 4/23 | 12 | 10 | 9/10 |
2 | Forsythia mandschurica | Forsythia | S | 11 | 18 | 4/19 | 11 | 18 | 5/2 | 11 | 12 | 9/28 |
3 | Philadelphus schrenkii | Philadelphus | S | 14 | 18 | 5/28 | 14 | 18 | 4/29 | 12 | 10 | 10/5 |
4 | Pinus koraiensis | Pinus | T | - | - | - | 10 | 17 | 6/1 | - | - | - |
5 | Juglans mandshurica | Juglans | T | 17 | 17 | 5/18 | 17 | 17 | 5/10 | - | - | - |
6 | Viburnum opulus subsp. calvescens | Viburnum | S | 13 | 18 | 5/25 | 13 | 18 | 4/28 | 13 | 17 | 10/8 |
7 | Lonicera maackii | Lonicera | S | 16 | 18 | 5/24 | 16 | 18 | 4/30 | - | - | - |
8 | Viburnum burejaeticum | Viburnum | S | 13 | 18 | 5/17 | 13 | 18 | 4/26 | 13 | 13 | 10/9 |
9 | Morus alba | Morus | S | 11 | 18 | 5/20 | 12 | 18 | 5/18 | 12 | 15 | 9/27 |
10 | Prunus sibirica | Prunus | T | 15 | 18 | 5/1 | 15 | 18 | 5/10 | - | - | - |
11 | Caragana arborescens | Caragana | S | 12 | 18 | 5/19 | 12 | 18 | 5/8 | - | - | - |
12 | Fraxinus mandshurica | Fraxinus | T | 11 | 18 | 5/3 | 14 | 18 | 5/13 | 14 | 15 | 9/29 |
13 | Xanthoceras sorbifolium | Xanthoceras | T | 11 | 18 | 5/19 | 11 | 18 | 5/17 | - | - | - |
14 | Flueggea suffruticosa | Flueggea | S | 10 | 17 | 6/19 | 10 | 18 | 5/18 | 10 | 16 | 10/2 |
15 | Ulmus pumila | Ulmus | T | 17 | 18 | 4/16 | 17 | 18 | 5/3 | 16 | 12 | 10/8 |
16 | Prunus triloba | Prunus | T | 16 | 18 | 5/2 | 16 | 18 | 5/7 | 14 | 14 | 10/2 |
17 | Pinus sylvestris var. mongolica | Pinus | T | - | - | - | 10 | 16 | 5/28 | - | - | - |
18 | Sorbaria sorbifolia | Sorbaria | S | 15 | 16 | 7/9 | 17 | 18 | 4/18 | - | - | - |
19 | Catalpa ovata | Catalpa | T | 12 | 16 | 6/24 | 13 | 18 | 5/21 | - | - | - |
20 | Syringa oblata | Syringa | S | 18 | 18 | 5/8 | 18 | 18 | 5/2 | 14 | 11 | 10/13 |
Species | Family | LF | NFFD1 | NFFD2 | MFFD | NFLD1 | NFLD2 | MFLD | NLCD1 | NLCD2 | MLCD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Acer tataricum subsp. ginnala | Acer | T | 15 | 28 | 5/24 | 14 | 27 | 5/2 | 14 | 29 | 9/24 |
2 | Prunus padus | Prunus | T | 15 | 28 | 5/7 | 14 | 28 | 4/22 | 11 | 28 | 9/28 |
3 | Salix babylonica | Salix | T | 13 | 29 | 4/30 | 13 | 27 | 4/23 | 11 | 26 | 10/21 |
4 | Picea koraiensis | Picea | T | - | - | - | 11 | 28 | 5/8 | - | - | - |
5 | Lespedeza bicolor | Lespedeza | T | 14 | 28 | 7/6 | - | - | - | 10 | 23 | 9/20 |
6 | Styphnolobium japonicum | Styphnolobium | T | 10 | 10 | 7/7 | 11 | 17 | 5/17 | 10 | 11 | 9/24 |
7 | Phellodendron amurense | Phellodendron | T | 11 | 29 | 6/7 | - | - | - | - | - | - |
8 | Prunus salicina | Prunus | T | 16 | 27 | 5/6 | 12 | 25 | 5/4 | 11 | 18 | 10/3 |
9 | Spiraea salicifolia | Spiraea | S | 13 | 22 | 6/18 | 12 | 18 | 4/21 | - | - | - |
10 | Rubus komarovii | Rubus | S | 11 | 26 | 6/4 | 11 | 27 | 4/30 | - | - | - |
11 | Malus baccata | Malus | T | 15 | 28 | 5/12 | 14 | 26 | 4/24 | 11 | 22 | 10/3 |
12 | Crataegus pinnatifida var. major | Crataegus | T | 16 | 28 | 5/27 | 15 | 28 | 4/29 | 11 | 26 | 9/28 |
13 | Rhamnus davurica | Rhamnus | S | 11 | 27 | 5/26 | 10 | 25 | 5/1 | - | - | - |
14 | Caragana arborescens | Caragana | S | 11 | 28 | 5/16 | - | - | - | - | - | - |
15 | Acer saccharum | Acer | T | 12 | 29 | 4/26 | 11 | 28 | 4/27 | - | - | - |
16 | Euonymus alatus | Euonymus | S | 14 | 29 | 5/19 | 13 | 28 | 4/29 | 11 | 19 | 9/29 |
17 | Populus pseudosimonii | Populus | T | 10 | 24 | 4/27 | 10 | 25 | 5/2 | - | - | - |
18 | Populus simonii | Populus | T | 14 | 20 | 4/30 | 14 | 26 | 5/5 | - | - | - |
19 | Rhododendron dauricum | Rhododendron | S | 10 | 29 | 4/29 | - | - | - | - | - | - |
20 | Larix gmelinii | Larix | T | 11 | 29 | 5/11 | 11 | 29 | 4/26 | 10 | 29 | 10/10 |
21 | Prunus pseudocerasus | Prunus | T | 15 | 20 | 5/4 | 13 | 18 | 5/1 | 11 | 16 | 10/12 |
22 | Ulmus pumila | Ulmus | T | 12 | 25 | 4/22 | 11 | 21 | 5/8 | - | - | - |
23 | Prunus triloba | Prunus | T | 13 | 12 | 5/3 | 12 | 11 | 4/30 | 11 | 12 | 10/5 |
24 | Quercus dentata | Quercus | T | 14 | 23 | 5/13 | 14 | 23 | 5/3 | 12 | 19 | 9/30 |
25 | Sorbaria sorbifolia | Sorbaria | S | 12 | 18 | 7/16 | 12 | 19 | 4/13 | - | - | - |
26 | Corylus heterophylla | Corylus | S | - | - | - | 10 | 28 | 5/1 | - | - | - |
27 | Catalpa ovata | Catalpa | T | 11 | 27 | 6/30 | 11 | 27 | 5/16 | - | - | - |
28 | Tilia amurensis | Tilia | T | 11 | 28 | 6/28 | - | - | - | - | - | - |
Appendix B
Appendix C
References
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Visser, M.E.; Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 2019, 3, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Wolkovich, E.M.; Cleland, E.E. The phenology of plant invasions: A community ecology perspective. Front. Ecol. Environ. 2011, 9, 287–294. [Google Scholar] [CrossRef]
- Piao, S.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 2007, 21, GB3018. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.g.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Laube, J.; Sparks, T.; Estrella, N.; Höfler, J.; Ankerst, D.; Menzel, A. Chilling outweighs photoperiod in preventing precocious spring development. Glob. Chang. Biol. 2014, 20, 170–182. [Google Scholar] [CrossRef]
- Peng, J.; Wu, C.; Zhang, X.; Wang, X. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Glob. Chang. Biol. 2019, 25, 2174–2188. [Google Scholar] [CrossRef]
- Reyes-Fox, M.; Steltzer, H.; Trlica, M.J.; McMaster, G.S.; Andales, A.A.; LeCain, D.R.; Morgan, J.A. Elevated CO2 further lengthens growing season under warming conditions. Nature 2014, 510, 259–262. [Google Scholar] [CrossRef]
- Lang, G.; Early, J.; Martin, G.; Darnell, R. Endo-, Para-, and Ecodormancy: Physiological Terminology and Classification for Dormancy Research. HortScience 1987, 22, 371–377. [Google Scholar] [CrossRef]
- Guo, Y.; Ren, G.; Zhang, K.; Li, Z.; Miao, Y.; Guo, H. Leaf senescence: Progression, regulation, and application. Mol. Hortic. 2021, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Zohner, C.; Mirzagholi, L.; Renner, S.; Mo, L.; Rebindaine, D.; Bucher, R.; Palouš, D.; Vitasse, Y.; Fu, Y.; Stocker, B.; et al. Effect of climate warming on the timing of autumn leaf senescence reverses after the summer solstice. Science 2023, 381, eadf5098. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Ohta, T.; Irasawa, M.; Nakamura, T. Climate change and extension of the Ginkgo biloba L. Growing season in Japan. Glob. Chang. Biol. 2003, 9, 1634–1642. [Google Scholar] [CrossRef]
- Ge, Q.; Wang, H.; Rutishauser, T.; Dai, J. Phenological response to climate change in China: A meta-analysis. Glob. Chang. Biol. 2015, 21, 265–274. [Google Scholar] [CrossRef]
- Pearse, W.D.; Stemkovski, M.; Lee, B.R.; Primack, R.B.; Lee, S.D. Consistent, linear phenological shifts across a century of observations in South Korea. New Phytol. 2023, 239, 824–829. [Google Scholar] [CrossRef]
- Jeong, S.J.; Medvigy, D. Macroscale prediction of autumn leaf coloration throughout the continental United States. Glob. Ecol. Biogeogr. 2014, 23, 1245–1254. [Google Scholar] [CrossRef]
- Jia, W.; Zhao, S.; Zhang, X.; Liu, S.; Henebry, G.M.; Liu, L. Urbanization imprint on land surface phenology: The urban-rural gradient analysis for Chinese cities. Glob. Chang. Biol. 2021, 27, 2895–2904. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, S.; Liu, S. Urban environments provide new perspectives for forecasting vegetation phenology responses under climate warming. Glob. Chang. Biol. 2023, 29, 4383–4396. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhang, L.; Liu, S. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sens. Environ. 2016, 176, 272–281. [Google Scholar] [CrossRef]
- Wan, M.; Liu, X. China’s National Phenological Observational Criterion; Science: Beijing, China, 1979. [Google Scholar]
- Fu, Y.H.; Geng, X.; Chen, S.; Wu, H.; Hao, F.; Zhang, X.; Wu, Z.; Zhang, J.; Tang, J.; Vitasse, Y.; et al. Global warming is increasing the discrepancy between green (actual) and thermal (potential) seasons of temperate trees. Glob. Chang. Biol. 2023, 29, 1377–1389. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wang, H.; Ge, Q. Multiple phenological responses to climate change among 42 plant species in Xi’an, China. Int. J. Biometeorol. 2013, 57, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Menzel, A. Plant phenological anomalies in Germany and their relation to air temperature and NAO. Clim. Chang. 2003, 57, 243–263. [Google Scholar] [CrossRef]
- Xu, Y.J.; Zhong, S.Y.; Dai, J.H.; Tao, Z.X.; Wang, H.J. Changes in flowering phenology of plants and their model simulation in Mudanjiang, China. Geogr. Res. 2017, 36, 779–789. [Google Scholar]
- Askeyev, O.V.; Sparks, T.H.; Askeyev, I.V.; Tishin, D.V.; Tryjanowski, P. East versus West: Contrasts in phenological patterns? Glob. Ecol. Biogeogr. 2010, 19, 783–793. [Google Scholar] [CrossRef]
- Hopkins, A.D. Bioclimatics: A Science of Life and Climate Relations (No. 280); US Department of Agriculture: Washington, DC, USA, 1938. [Google Scholar]
- Zhu, W.; Tian, H.; Xu, X.; Pan, Y.; Chen, G.; Lin, W. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Glob. Ecol. Biogeogr. 2012, 21, 260–271. [Google Scholar] [CrossRef]
- Dai, J.; Wang, H.; Ge, Q. The spatial pattern of leaf phenology and its response to climate change in China. Int. J. Biometeorol. 2014, 58, 521–528. [Google Scholar] [CrossRef]
- Shen, M.; Cong, N.; Cao, R. Temperature sensitivity as an explanation of the latitudinal pattern of green-up date trend in Northern Hemisphere vegetation during 1982–2008. Int. J. Climatol. 2015, 35, 3707–3712. [Google Scholar] [CrossRef]
- Zeng, Z.A.; Wolkovich, E.M. Weak evidence of provenance effects in spring phenology across Europe and North America. New Phytol. 2024, 242, 1957–1964. [Google Scholar] [CrossRef]
- Fu, Y.H.; Piao, S.; Op de Beeck, M.; Cong, N.; Zhao, H.; Zhang, Y.; Menzel, A.; Janssens, I.A. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 2014, 23, 1255–1263. [Google Scholar] [CrossRef]
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Menzel, A.; Yuan, Y.; Matiu, M.; Sparks, T.; Scheifinger, H.; Gehrig, R.; Estrella, N. Climate change fingerprints in recent European plant phenology. Glob. Chang. Biol. 2020, 26, 2599–2612. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, S. A stronger advance of urban spring vegetation phenology narrows vegetation productivity difference between urban settings and natural environments. Sci. Total Environ. 2023, 868, 161649. [Google Scholar] [CrossRef] [PubMed]
- Seyednasrollah, B.; Young, A.; Li, X.; Milliman, T.; Ault, T.; Frolking, S.; Friedl, M.; Richardson, A. Sensitivity of Deciduous Forest Phenology to Environmental Drivers: Implications for Climate Change Impacts Across North America. Geophys. Res. Lett. 2020, 47, e2019GL086788. [Google Scholar] [CrossRef]
- Gao, M.; Wang, X.; Meng, F.; Liu, Q.; Li, X.; Zhang, Y.; Piao, S. Three-dimensional change in temperature sensitivity of northern vegetation phenology. Glob. Chang. Biol. 2020, 26, 5189–5201. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Wang, X.; Zohner, C.M.; Peñuelas, J.; Zhou, Y.; Tang, Z.; Xia, J.; Zheng, H.; Fu, Y.; Liang, J.; et al. Biodiversity buffers the response of spring leaf unfolding to climate warming. Nat. Clim. Chang. 2024, 14, 863–868. [Google Scholar] [CrossRef]
- Zohner, C.M.; Benito, B.M.; Svenning, J.-C.; Renner, S.S. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Chang. 2016, 6, 1120–1123. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Ge, Q.; Dai, J. The Interactive Effects of Chilling, Photoperiod, and Forcing Temperature on Flowering Phenology of Temperate Woody Plants. Front. Plant Sci. 2020, 11, 443. [Google Scholar] [CrossRef]
- Descals, A.; Verger, A.; Yin, G.; Filella, I.; Fu, Y.H.; Piao, S.; Janssens, I.A.; Penuelas, J. Radiation-constrained boundaries cause nonuniform responses of the carbon uptake phenology to climatic warming in the Northern Hemisphere. Glob. Chang. Biol. 2023, 29, 719–730. [Google Scholar] [CrossRef]
- Kopp, C.W.; Neto-Bradley, B.M.; Lipsen, L.P.J.; Sandhar, J.; Smith, S. Herbarium records indicate variation in bloom-time sensitivity to temperature across a geographically diverse region. Int. J. Biometeorol. 2020, 64, 873–880. [Google Scholar] [CrossRef]
- Gallinat, A.S.; Primack, R.B.; Wagner, D.L. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 2015, 30, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Wang, H.; Ge, Q. Interpretable machine learning algorithms to predict leaf senescence date of deciduous trees. Agric. For. Meteorol. 2023, 340, 109623. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Lin, S.; Liu, W.; Gao, C.; Bai, W.; Zhu, M.; Hao, Y.; Hao, X.; Dai, J. Shifts in Plant Phenology and Its Responses to Climate Warming in Three Temperate Cities of China during 1963–2020. Forests 2024, 15, 1712. https://doi.org/10.3390/f15101712
Cao L, Lin S, Liu W, Gao C, Bai W, Zhu M, Hao Y, Hao X, Dai J. Shifts in Plant Phenology and Its Responses to Climate Warming in Three Temperate Cities of China during 1963–2020. Forests. 2024; 15(10):1712. https://doi.org/10.3390/f15101712
Chicago/Turabian StyleCao, Lijuan, Shaozhi Lin, Wei Liu, Chengxi Gao, Wenrui Bai, Mengyao Zhu, Yulong Hao, Xingming Hao, and Junhu Dai. 2024. "Shifts in Plant Phenology and Its Responses to Climate Warming in Three Temperate Cities of China during 1963–2020" Forests 15, no. 10: 1712. https://doi.org/10.3390/f15101712