Analysis of Distribution Characteristics and Driving Factors of Forestry Enterprises in China Using Geospatial Technology and Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Research Methods
2.2.1. Standard Deviation Ellipse
2.2.2. Kernel Density Analysis
2.2.3. Hotspot Analysis
2.2.4. Exploratory Regression Analysis
- A substantial adjusted R-squared (R2 > 0.40) value must be achieved for the combination of indicators.
- Each individual indicator must be significant at a level of 10% (p < 0.1).
- VIF values must be significantly lower than 10.0.
- Indicator combinations with the smallest Akaike Information Criterion (AIC) values must be selected.
2.2.5. Ordinary Least Squares Regression (OLS) and Geographically Weighted Regression (GWR) Model
2.2.6. Multiscale Geographically Weighted Regression (MGWR) Model
3. Results
3.1. Analysis of the Evolution of Spatial Patterns of Forestry Enterprises in China
3.1.1. Standard Deviation Ellipse of Spatial Distribution of Forestry Enterprises in China
3.1.2. Changes in Spatial Distribution Density of Forestry Enterprises in China
3.1.3. Analysis of Spatial Distribution Hotspots of Chinese Forestry Enterprises
3.2. Analysis of Factors Influencing the Distribution of the Number of Forestry Enterprises by City
3.2.1. Exploratory Regression Analysis Result
3.2.2. Comparison of OLS, GWR, and MGWR Regression Models
3.2.3. Spatial Distribution of Coefficients in the MGWR Regression Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- von Carlowitz, H.C. Sylvicultura Oeconomica. In Sylvicultura Oeconomica; Anweisung zur wilden Baum-Zucht: Leipzig, Germany, 1732; ISBN 9783941300569. [Google Scholar]
- Siry, J.P.; Cubbage, F.W.; Ahmed, M.R. Sustainable Forest Management: Global Trends and Opportunities. For. Policy Econ. 2005, 7, 551–561. [Google Scholar] [CrossRef]
- MacDicken, K.G.; Sola, P.; Hall, J.E.; Sabogal, C.; Tadoum, M.; de Wasseige, C. Global Progress Toward Sustainable Forest Management. For. Ecol. Manag. 2015, 352, 47–56. [Google Scholar] [CrossRef]
- United Nations, General Assembly. The Future We Want. A/RES/66/288; Rio de Janeiro, Brazil. 2012. Available online: https://undocs.org/A/RES/66/288 (accessed on 2 January 2019).
- Burton, P.J.; Messier, C.; Adamowicz, W.L.; Kuuluvainen, T. Sustainable Management of Canada’s Boreal Forests: Progress and Prospects. Ecoscience 2006, 13, 234–248. [Google Scholar] [CrossRef]
- Lindahl, K.B.; Sténs, A.; Sandström, C.; Johansson, J.; Lidskog, R.; Ranius, T.; Roberge, J.M. The Swedish Forestry Model: More of Everything? For. Policy Econ. 2017, 77, 44–55. [Google Scholar] [CrossRef]
- Sotirov, M.; Blum, M.; Storch, S.; Selter, A.; Schraml, U. Do Forest Policy Actors Learn Through Forward-Thinking? Conflict and Cooperation Relating to the Past, Present and Futures of Sustainable Forest Management in Germany. For. Policy Econ. 2017, 85, 256–268. [Google Scholar] [CrossRef]
- Baumgartner, R.J. Sustainable development goals and the forest sector—A complex relationship. Forests 2019, 10, 152. [Google Scholar] [CrossRef]
- Liu, Q.W. The Power of Forest and Grass in Beautiful China. China Green Times, 15 July 2021. Available online: https://www.forestry.gov.cn/c/www/lcdt/80887.jhtml (accessed on 30 April 2024).
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Erb, K.; Kastner, T.; Luyssaert, S.; Houghton, R.A.; Kuemmerle, T.; Olofsson, P.; Haberl, H. Bias in the attribution of forest carbon sinks. Nat. Clim. Change 2013, 3, 854–856. [Google Scholar] [CrossRef]
- Magerl, A.; Matej, S.; Kaufmann, L.; Le Noe, J.; Erb, K.; Gingrich, S. Forest carbon sink in the US (1870–2012) driven by substitution of forest ecosystem service flows. Resour. Conserv. Recycl. 2022, 176, 105927. [Google Scholar] [CrossRef]
- Raihan, A. Sustainable development in Europe: A review of the forestry sector’s social, environmental, and economic dynamics. Glob. Sustain. Res. 2023, 2, 72–92. [Google Scholar] [CrossRef]
- Ke, S.; Qiao, D.; Zhang, X.; Feng, Q. Changes of China’s forestry and forest products industry over the past 40 years and challenges lying ahead. For. Policy Econ. 2019, 106, 101949. [Google Scholar] [CrossRef]
- Liubachyna, A.; Secco, L.; Pettenella, D. Reporting practices of state forest enterprises in Europe. For. Policy Econ. 2017, 78, 162–172. [Google Scholar] [CrossRef]
- Neykov, N.; Krišťáková, S.; Antov, P.; Halalisan, A.; Hajdúchová, I.; Sedliačiková, M.; Sloup, R.; Šišák, L. Capital structure determinants of forest enterprises: Empirical study based on panel data analysis from the Czech Republic, Slovakia, and Bulgaria. Forests 2022, 13, 749. [Google Scholar] [CrossRef]
- Mendell, B.C.; Sydor, T.; Mishra, N. Capital structure in the United States forest products industry: The influence of debt and taxes. For. Sci. 2006, 52, 540–548. [Google Scholar] [CrossRef]
- Krištofík, P.; Medzihorský, J. Capital Structure Determinants of Wood-Processing Enterprises in Slovakia. Acta Fac. Xylol. Zvolen 2022, 64, 135–146. [Google Scholar] [CrossRef]
- Garasym, P.; Klym, N.; Khomyak, R. Features of taxation of forestry enterprises. Econ. Entrep. Manag. 2018, 5, 55–62. [Google Scholar] [CrossRef]
- Anane, S.; Kombiok, E.; Afrifa, A.B. The characteristics and impact of small and medium forest enterprises on sustainable forest management in Ghana. Sci. Rep. 2023, 13, 1208. [Google Scholar] [CrossRef]
- Badini, O.S.; Hajjar, R.; Kozak, R. Critical success factors for small and medium forest enterprises: A review. For. Policy Econ. 2018, 94, 35–45. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.; Ding, Z.; Yao, S. Impact of the Management Scale on the Technical Efficiency of Forest Vegetation Carbon Sequestration: A Case Study of State-Owned Forestry Enterprises in Northeast China. Remote Sens. 2022, 14, 5528. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D. Assessing the eco-efficiency of complex forestry enterprises using LCA/time-series DEA methodology. Ecol. Indic. 2022, 142, 109166. [Google Scholar] [CrossRef]
- Lu, F.; Kozak, R.; Toppinen, A.; D Amato, D.; Wen, Z. Factors influencing levels of CSR disclosure by forestry companies in China. Sustainability 2017, 9, 1800. [Google Scholar] [CrossRef]
- Kolev, K.; Tsoklinova, M.; Delkov, A. Factor Analysis of Forestry Competitiveness. For. Sci. 2020, 56, 2. [Google Scholar]
- Savić, N.; Stojanovska, M.; Stojanovski, V. Analyses of the Competitiveness of Forest Industry in the Republic of Macedonia. South-East Eur. For. 2011, 2, 13–21. [Google Scholar] [CrossRef]
- Munnich, L.W.; Chatfield, N.; Schrock, G.; Lichty, R.W.; McIntosh, C.; Wittrock, T. Northeast Minnesota Industry Cluster Study. 2001. Available online: https://hdl.handle.net/11299/189294 (accessed on 1 February 2024).
- Hagadone, T.A.; Grala, R.K. Business clusters in Mississippi’s forest products industry. For. Policy Econ. 2012, 20, 16–24. [Google Scholar] [CrossRef]
- Kies, U.; Mrosek, T.; Schulte, A. Spatial analysis of regional industrial clusters in the German forest sector. Int. For. Rev. 2009, 11, 38–51. [Google Scholar] [CrossRef]
- Han, Y. Study on the Spatial-Temporal Differentiation and Economic Effect of Forestry Industry Agglomeration. Master’s Thesis, Northeast Forestry University, Harbin, China, 2021. (In Chinese). [Google Scholar]
- Jin, M.; Chen, N.; Sun, H.; Cao, F. Characteristics of Spatial–Temporal Differences and Measurement of the Level of Forestry Industry Integration in China. Sustainability 2023, 15, 8855. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, H.; Zhao, W.; Zhao, M.; Zhang, Y. Spatial agglomeration of China’s forest products manufacturing industry: Measurement, characteristics and determinants. Forests 2021, 12, 1006. [Google Scholar] [CrossRef]
- Song, Z.; Liu, W. Spatial distribution and influencing factors of Chinese virtual enterprises. Prog. Geogr. 2011, 30, 1021–1027. (In Chinese) [Google Scholar]
- Zhu, H.; Liu, R.; Chen, B. The Rise of Specialized and Innovative Little Giant Enterprises under China’s ‘Dual Circulation’Development Pattern: An Analysis of Spatial Patterns and Determinants. Land 2023, 12, 259. [Google Scholar] [CrossRef]
- Shang, X.; Niu, H. Analysis of the spatiotemporal evolution and driving factors of China’s digital economy development based on Esda and Gm-gwr model. Sustainability 2023, 15, 11970. [Google Scholar] [CrossRef]
- Wang, T.; Ma, Y.; Luo, S. Spatial Pattern and Influencing Factors of Agricultural Leading Enterprises in Heilongjiang Province, China. Agriculture 2023, 13, 2061. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Liu, X.; Wang, Z. Spatial evolution and influencing factors of organic agricultural enterprises bases in Sichuan Province, China. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 67–76. (In Chinese) [Google Scholar]
- Hassan, M.M.; Alenezi, M.S.; Good, R.Z. Spatial pattern analysis of manufacturing industries in Keraniganj, Dhaka, Bangladesh. Geojournal 2020, 85, 269–283. [Google Scholar] [CrossRef]
- Kiss, E.; Páger, B. Spatial patterns of manufacturing sectors and digitalisation in Hungary in the age of Industry 4.0. Eur. Plan. Stud. 2024, 32, 668–693. [Google Scholar] [CrossRef]
- Liu, F.; Li, H. Evaluation of Forestry Industry Agglomeration and Regional Different Analysis in China’s Southern Collective Forest Region; International School on Neural Networks, Initiated by IIASS and EMFCSC; Springer: Cham, Switzerland, 2022; pp. 1325–1339. [Google Scholar]
- Xia, Y.; Shen, W. Agglomeration level measurement, evolution trend and industrial economic growth of China’s forest products industry: An empirical study based on 2003–2016 Data. World. For. Res. 2018, 31, 42–46. (In Chinese) [Google Scholar]
- Zhang, J.; Fu, Y.; Zhang, B. Research on the Firm Spatial Distribution and Influencing Factors of the Service-Oriented Digital Industry in Yangtze River Delta. Sustainability 2022, 14, 14902. [Google Scholar] [CrossRef]
- Cao, L.; Deng, F.; Zhuo, C.; Jiang, Y.; Li, Z.; Xu, H. Spatial distribution patterns and influencing factors of China’s new energy vehicle industry. J. Clean. Prod. 2022, 379, 134641. [Google Scholar] [CrossRef]
- Chen, S.; Yao, S. Evaluation of forestry ecological efficiency: A spatiotemporal empirical study based on China’s Provinces. Forests 2021, 12, 142. [Google Scholar] [CrossRef]
- Wei, W.; Yin, G.; Xie, S.; Sun, Q.; Zhang, Z.; Li, G. The Spatio-Temporal Patterns and Influencing Factors of Different New Agricultural Business Entities in China—Based on POI Data from 2012 to 2021. Agriculture 2023, 13, 1512. [Google Scholar] [CrossRef]
- Li, S.; Wu, Y.; Yu, Q.; Chen, X. National Agricultural Science and Technology Parks in China: Distribution characteristics, innovation efficiency, and influencing factors. Agriculture 2023, 13, 1459. [Google Scholar] [CrossRef]
- Scott, L.M.; Janikas, M.V. Spatial Statistics in ArcGIS. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 27–41. [Google Scholar]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Q.; Wei, P.; Zhao, H.; Zhang, X.; Pang, C. Explore the mitigation mechanism of urban thermal environment by integrating geographic detector and standard deviation ellipse (SDE). Remote Sens. 2022, 14, 3411. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, X.; Xu, Q. Spatial distribution characteristics and influencing factors of agricultural specialized villages in Guangdong Province, China. Chin. Geogr. Sci. 2022, 32, 1013–1034. [Google Scholar] [CrossRef]
- Kumari, B.; Pandey, A.C. MODIS based forest fire hotspot analysis and its relationship with climatic variables. Spat. Inf. Res. 2020, 28, 87–99. [Google Scholar] [CrossRef]
- Feng, Y.; Tong, X. Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change. Environ. Monit. Assess. 2017, 189, 515. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, Q.; Lu, Y.; Li, M.; Chen, Z.; Li, F. Analysis of life expectancy and the spatial differences of its influencing factors of Chinese residents. J. Geo-Inf. Sci. 2021, 23, 1575–1585. (In Chinese) [Google Scholar]
- Kashki, A.; Karami, M.; Zandi, R.; Roki, Z. Evaluation of the effect of geographical parameters on the formation of the land surface temperature by applying OLS and GWR, A case study Shiraz City, Iran. Urban Clim. 2021, 37, 100832. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Duan, J.; Zhao, Z.; Xu, Y.; You, X.; Yang, F.; Chen, G. Spatial Distribution Characteristics and Driving Factors of Little Giant Enterprises in China’s Megacity Clusters Based on Random Forest and MGWR. Land 2024, 13, 1105. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Wei, X. Study on Industrial Agglomeration Characteristics, Mechanism and Growth Effect of Forestry in China. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2022. (In Chinese). [Google Scholar]
- Huang, L.; Wu, G.; Cao, Y. Spatial Distribution of Development Types of Forestry-Ecological-Culture Industries in Chinese Provinces. Sustainability 2022, 14, 11566. [Google Scholar] [CrossRef]
- Song, W.; Yang, C. Forestry industrial structure, spatial distribution and evolution mechanism Since 1949. For. Econ. 2020, 42, 3–17. (In Chinese) [Google Scholar]
- Wu, S.; Li, B.; Xu, D. Agglomeration Characteristics and Influencing Factors of Urban Innovation Spaces Based on the Distribution Data of High-Tech Enterprises in Harbin. Buildings 2024, 14, 1615. [Google Scholar] [CrossRef]
- Cao, L.; Si, Y.; Sun, G. Impact of human capital on the development quality of forestry industry. Guangdong. Agric. Sci. 2021, 48, 152–160. (In Chinese) [Google Scholar]
Variable Name | Variable Definition | Variable Symbol | Unit |
---|---|---|---|
Human Resources | Average wage of employees in non-private urban units | AWE_NPU | Yuan |
Number of employees covered by basic urban old-age insurance | NEC_BUOI | Persons | |
Permanent resident population | PRP | Persons | |
Economic Development Level | Gross Domestic Product (GDP) | GDP | 100 million Yuan |
Per capita GDP | PCGDP | Yuan | |
Total retail sales of social consumer goods | TRS_SCG | 10 thousand Yuan | |
Industrial Structure Development | Average registered capital of enterprises | ARC_E | Yuan |
Proportion of the primary industry in the regional GDP | PPI_RGDP | % | |
Proportion of the secondary industry in the regional GDP | PSI_RGDP | % | |
Proportion of the tertiary industry in the regional GDP | PTI_RGDP | % | |
Technological Support | Number of patents granted | NPG | Items |
Trade Development | Total import and export volume | TIEV | CNY 10 thousand |
Number of industrial enterprises above designated size | NIE_ADS | Units | |
Volume of highway freight transportation | VHFT | 10 thousand tons | |
Financial Environment | Year-end balance of RMB loans by financial institutions | YEB_RMB_FI | CNY 10 thousand |
Year-end balance of RMB deposits by financial institutions | YEB_RMB_DI | CNY 10 thousand | |
Natural Conditions | Orchard area | OA | Hectares |
Forest area | FA | Hectares | |
Grassland area | GLA | Hectares | |
Urban Construction | Built-up area of urban districts | BA_UD | Square kilometers |
Green area | GRA | Hectares | |
Green coverage rate of built-up areas | GCR_BA | % | |
Urban industrial and mining land area | UIMLA | Hectares | |
Urban warehouse land area | UWLA | Hectares | |
Transportation Convenience | Density of highways within the territory | DHWT | Kilometers per square kilometer |
Time | CenterX | CenterY | XstdDist | YStdDist | Rotation | Area | Ellipticity |
---|---|---|---|---|---|---|---|
2000 | 112.122 | 32.683 | 887.952 | 1355.919 | 33.026 | 378.220 | 0.345 |
2005 | 112.320 | 32.548 | 902.834 | 1338.982 | 31.575 | 379.757 | 0.326 |
2010 | 112.564 | 32.229 | 920.730 | 1304.338 | 28.946 | 377.265 | 0.294 |
2015 | 112.706 | 31.629 | 942.800 | 1273.811 | 24.823 | 377.268 | 0.260 |
2020 | 113.082 | 31.500 | 1005.330 | 1213.388 | 20.628 | 383.208 | 0.171 |
Variable | Coefficient | Standard Error | T-Test | p-Value | VIF |
---|---|---|---|---|---|
Constant term | −0.000 | 0.038 | −0.000 | 1.000 | – |
DHWT | −0.081 | 0.043 | −1.875 | 0.061 | 1.277 |
TIEV | −0.671 | 0.089 | −7.528 | 0.000 | 5.490 |
NPG | 0.510 | 0.105 | 4.833 | 0.000 | 7.672 |
PRP | 0.304 | 0.068 | 4.500 | 0.000 | 3.145 |
GRA | 0.421 | 0.072 | 5.810 | 0.000 | 3.624 |
OA | 0.115 | 0.041 | 2.798 | 0.005 | 1.159 |
FA | 0.145 | 0.042 | 3.468 | 0.001 | 1.210 |
Explanatory Variable | Model | Sample Size | Sum of Squares of the Residuals | AICc | R2 | Adjust R2 |
---|---|---|---|---|---|---|
Number of forestry enterprises | OLS | 367 | 190.889 | 820.108 | 0.480 | 0.470 |
Number of forestry enterprises | GWR | 367 | 65.999 | 662.081 | 0.820 | 0.760 |
Number of forestry enterprises | MGWR | 367 | 64.804 | 561.178 | 0.823 | 0.787 |
Variable | Bandwidth | Mean | Standard Deviation | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
Constant term | 60.000 | 0.139 | 0.323 | −0.422 | 0.096 | 1.313 |
DHWT | 60.000 | −0.146 | 0.276 | −1.390 | −0.063 | 0.247 |
TIEV | 60.000 | −0.231 | 1.248 | −2.481 | −0.423 | 4.960 |
NPG | 60.000 | 0.151 | 0.747 | −1.897 | 0.247 | 1.976 |
PRP | 60.000 | 0.544 | 0.468 | −0.163 | 0.408 | 2.445 |
GRA | 60.000 | 0.410 | 0.529 | −0.882 | 0.250 | 2.136 |
OA | 60.000 | 0.031 | 0.090 | −0.198 | 0.036 | 0.324 |
FA | 60.000 | 0.260 | 0.272 | −0.477 | 0.203 | 1.324 |
Variable | Bandwidth | Mean | Standard Deviation | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
Constant term | 43.000 | 0.048 | 0.253 | −0.390 | −0.009 | 1.173 |
DHWT | 50.000 | −0.165 | 0.219 | −1.319 | −0.090 | 0.172 |
TIEV | 166.000 | −0.217 | 0.180 | −0.585 | −0.140 | −0.012 |
NPG | 366.000 | 0.105 | 0.003 | 0.099 | 0.105 | 0.112 |
PRP | 46.000 | 0.410 | 0.311 | 0.046 | 0.334 | 2.172 |
GRA | 82.000 | 0.498 | 0.338 | 0.019 | 0.505 | 1.119 |
OA | 366.000 | 0.048 | 0.001 | 0.046 | 0.048 | 0.050 |
FA | 310.000 | 0.159 | 0.047 | 0.080 | 0.157 | 0.246 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Ni, H.; Su, X.; Nian, Y.; Li, J.; Wang, W.; Sheng, Y.; Zhu, X.; Liu, J.; Li, W.; et al. Analysis of Distribution Characteristics and Driving Factors of Forestry Enterprises in China Using Geospatial Technology and Models. Forests 2025, 16, 364. https://doi.org/10.3390/f16020364
Ma Q, Ni H, Su X, Nian Y, Li J, Wang W, Sheng Y, Zhu X, Liu J, Li W, et al. Analysis of Distribution Characteristics and Driving Factors of Forestry Enterprises in China Using Geospatial Technology and Models. Forests. 2025; 16(2):364. https://doi.org/10.3390/f16020364
Chicago/Turabian StyleMa, Qiang, Honghong Ni, Xiangxiang Su, Ying Nian, Jun Li, Weiqiang Wang, Yali Sheng, Xueqing Zhu, Jiale Liu, Weizhong Li, and et al. 2025. "Analysis of Distribution Characteristics and Driving Factors of Forestry Enterprises in China Using Geospatial Technology and Models" Forests 16, no. 2: 364. https://doi.org/10.3390/f16020364
APA StyleMa, Q., Ni, H., Su, X., Nian, Y., Li, J., Wang, W., Sheng, Y., Zhu, X., Liu, J., Li, W., Liu, J., & Li, X. (2025). Analysis of Distribution Characteristics and Driving Factors of Forestry Enterprises in China Using Geospatial Technology and Models. Forests, 16(2), 364. https://doi.org/10.3390/f16020364